Objective: To evaluate the clinical and radiographic results and complications of arthroscopic subcapital realignment osteotomy for the treatment of chronic and stable proximal femoral epiphysiolysis (PFE) in an initial series of patients. According to the literature review, the study presents the first description of an arthroscopic technique of this type of osteotomy. Methods: Between June 2012 and December 2014, seven patients underwent arthroscopic subcapital realignment osteotomy for the treatment of chronic, stable PFE. The mean age of the patients was 11 years and four months. Minimum follow-up ranged from 6 to 36 months (mean, 16.5 months). Patients were clinically evaluated according to the Harris Hip Score modified by Byrd and radiographically according to Southwick’s quantitative classification and the epiphyseal-diaphyseal angle. Postoperative complications were analyzed. Results: With regard to the evaluation of the Harris Hip Score Modified by Byrd clinical score, a preoperative mean of 35.8 points and a postoperative mean of 97.5 points were observed (p < 0.05). Radiographically, five patients were classified as Southwick grade II and two as grade III. A mean correction of the epiphyseal-diaphyseal angle of 40° was observed. There were no immediate postoperative complications. One patient developed avascular necrosis of the femoral head, without collapse or chondrolysis at the last follow-up (22 months). Conclusion: The arthroscopic technique presented by the authors for the treatment of chronic, stable PFE resulted in clinical and radiographic improvement of the patients in this initial series.
The cross wire projection welding of wires (Al 5182, = 4 mm) performed using the conventional (i.e. pneumatic) electrode force system was subjected to thorough numerical analysis. Calculations were performed until one of adopted boundary conditions, i.e., maximum welding time, maximum penetration of wires, the occurrence of expulsion or the exceeding of the temperature limit in the contact between the electrode and the welded material was obtained. It was observed that the ring weld was formed within the entire range of welding parameters. The process of welding was subjected to optimisation through the application of a new electromechanical electrode force system and the use of a special hybrid algorithm of electrode force and/or displacement control. Comparative numerical calculations were performed (using SORPAS software) for both electrode force systems. Technological welding tests were performed using inverter welding machines (1 kHz) provided with various electrode force systems. The research also involved the performance of metallographic and strength (peeling) tests as well as measurements of welding process characteristic parameters (welding current and voltage).
The welding process optimisation involving the use of the electromechanical force system and the application of the hybrid algorithm of force control resulted in i) more favourable space distribution of welding power, ii) energy concentration in the central zone of the weld, iii) favourable (desired) melting of the material within the entire weld transcrystallisation zone and iv) obtainment of a full weld nugget.
This paper presents the state of displacement of a multilayered composite laminate subjected to transverse static load with varying balance, symmetric and anti-symmetric angle-ply and cross-ply staking sequences. Higher-order shear deformation theory (HSDT) is considered in the finite element formulation of nine-noded isoparametric element with seven degrees of freedom at each node. The finite element formulation is transformed into computer codes. A convergence study is carried out first to obtain the optimal mesh size for minimizing the computational time. The maximum deflection at the center of plate for both fixed and simply supported edges is verified with reported literature and a good conformity is found. An attempt has been made to observe the minimum value of maximum deflection in the laminate for attaining the maximum strength of laminate with a suitable combination of stacking sequences with a constant volume of material.
The effect of foliar treatment with brassinosteroid (BR) on gender distribution in flowers of walnut (Juglans regia L. cv. Chandler) was investigated. Grafted walnut saplings (‘Chandler’) on the wild walnut (Juglans regia L.) rootstock were planted into 70-liter pots with a soil: peat: perlite medium and grown in pots between 2016–2020. BRs (24-epibrassinolide; EBR and 22(S), 23(S)-homobrassinolide; HBR) were applied at a concentration of 1 mg L–1 for four consecutive years at the time of flower differentiation. The experimental design was completely randomized with three replicates. The results show that BR applications could alter the sexual distribution of the walnut’s flower. BRs application significantly increased the number of total flowers and female flowers per tree. The number of female flowers was also increased by the season. The highest number of female flowers (20.9) was observed in the trees in 2020 and the application of 1 mg L–1 of HBR. It was determined that the annual growth of the plant and the increase in the number of females and total flowers were positively related. The effect of BRs indicated that the response was BR-type specific.
This paper aims to explore the impact of V-Girls APP on the improvement of female college students' Health literacy and its mechanism. Using a questionnaire survey method, the survey subjects were female students from a certain university. The results showed that using the V-Girls app can significantly improve the health knowledge level, health behavior habits, and mental health status of female college students. Further analysis reveals that the impact mechanisms of V-Girls APP mainly include cognitive mechanisms, social support mechanisms, and behavioral guidance mechanisms. The results of this study provide new ways and ideas for improving female college students' Health literacy.
The journey towards better healthcare sustainability in Asian nations demands a comprehensive investigation into the impact of urban governance, poverty, and female literacy on infant mortality rates. This study undertakes a rigorous exploration of these key factors to pave the way for evidence-based policy interventions, utilizing data from a panel of six selected Asian countries: Pakistan, China, India, Indonesia, Malaysia, and the Philippines, spanning the years 2001 to 2020. The findings reveal that adequate sanitation facilities, higher female literacy rates, and sustained economic growth contribute to a reduction in infant mortality. Conversely, increased poverty levels and limited women’s autonomy exacerbate the infant mortality rates observed in these countries. The Granger causality analysis validates the reciprocal relationship between urban sanitation (and poverty) and infant mortality rates. Furthermore, the study establishes a causal relationship where female literacy rates Granger-cause infant mortality rates, and conversely, infant mortality rates Granger-cause women’s autonomy in these countries. The variance decomposition analysis indicates that sustained economic growth, improved female literacy rates, and enhanced women’s empowerment will likely impact infant mortality rates in the coming decade. Consequently, in low-income regions where numerous children face potentially hazardous circumstances, it is imperative to allocate resources towards establishing and maintaining accessible fundamental knowledge regarding sanitation services, as this will aid in reducing infant mortality rates.
Copyright © by EnPress Publisher. All rights reserved.