The study of the performance of high-efficiency heat pump systems has been a hot issue of general interest in the field of heat pump air conditioning. For the designed and developed two-stage casing tandem heat exchanger of heat pump system, the 3D finite volume method and the realizable k-ε model are used to numerically analyze the influence law of inlet fluid temperature and flow velocity on the overall heat transfer coefficient as well as the Nussle number of inner and outer tubes. The results show that decreasing the inlet water temperature or increasing the inlet refrigerant temperature can improve the overall heat transfer performance; Nuin increases with the increase of water and refrigerant flow rates, while Nuout increases with the increase of water flow rate but decreases with the increase of refrigerant flow rate; Nuin and Nuout both increase with the decrease of water temperature or refrigerant temperature increases.
A numerical investigation utilizing water as the working fluid was conducted on a 2D closed loop pulsating heat pipe (CLPHP) using the CFD software AnsysFluent19.0. This computational fluid dynamics (CFD) investigation explores three instances where there is a consistent input of heat flux in the evaporator region, but the temperatures in the condenser region differ across the cases. In each case, the condenser temperatures are set at 10 ℃, 20 ℃, and 30 ℃ respectively. The transient simulation is conducted with uniform time steps of 10 s. Generally, the heat rejection medium operated at a lower temperature performs better than at a higher temperature. In this CFD study the thermal resistances gets decreased with the decreasing value of condenser temperatures and the deviation of 35.31% of thermal resistance gets decreased with the condenser region operated at the temperature of 10 ℃.
Copyright © by EnPress Publisher. All rights reserved.