Clinical/methodological problem: The identification of clinically significant prostate carcinomas while avoiding overdiagnosis of low-malignant tumors is a challenge in routine clinical practice. Standard radiologic procedures: Multiparametric magnetic resonance imaging (MRI) of the prostate acquired and interpreted according to PI-RADS (Prostate Imaging Reporting and Data System Guidelines) is accepted as a clinical standard among urologists and radiologists. Methodological innovations: The PI-RADS guidelines have been newly updated to version 2.1 and, in addition to more precise technical requirements, include individual changes in lesion assessment. Performance: The PI-RADS guidelines have become crucial in the standardization of multiparametric MRI of the prostate and provide templates for structured reporting, facilitating communication with the referring physician. Evaluation: The guidelines, now updated to version 2.1, represent a refinement of the widely used version 2.0. Many aspects of reporting have been clarified, but some previously known limitations remain and require further improvement of the guidelines in future versions.
Background: Multiple sclerosis is often a longitudinal disease continuum with an initial relapsing-remitting phase (RRMS) and later secondary progression (SPMS). Most currently approved therapies are not sufficiently effective in SPMS. Early detection of SPMS conversion is therefore critical for therapy selection. Important decision-making tools may include testing of partial cognitive performance and magnetic resonance imaging (MRI). Aim of the work: To demonstrate the importance of cognitive testing and MRI for the prediction and detection of SPMS conversion. Elaboration of strategies for follow-up and therapy management in practice, especially in outpatient care. Material and methods: Review based on an unsystematic literature search. Results: Standardized cognitive testing can be helpful for early SPMS diagnosis and facilitate progression assessment. Annual use of sensitive screening tests such as Symbol Digit Modalities Test (SDMT) and Brief Visual Memory Test-Revised (BVMT-R) or the Brief International Cognitive Assessment for MS (BICAMS) test battery is recommended. Persistent inflammatory activity on MRI in the first three years of disease and the presence of cortical lesions are predictive of SPMS conversion. Standardized MRI monitoring for features of progressive MS can support clinically and neurocognitively based suspicion of SPMS. Discussion: Interdisciplinary care of MS patients by clinically skilled neurologists, supported by neuropsychological testing and MRI, has a high value for SPMS prediction and diagnosis. The latter allows early conversion to appropriate therapies, as SPMS requires different interventions than RRMS. After drug switching, clinical, neuropsychological, and imaging vigilance allows stringent monitoring for neuroinflammatory and degenerative activity as well as treatment complications.
Infrared thermal imaging technology is another new branch for medical imaging after traditional medical imaging technologies such as X-ray, ultrasound and magnetic resonance (MRI). It has the advantages of noninvasive, nondestructive, simple and fast. Its application can radiate multiple clinical departments. This paper mainly expounds the principle, influencing factors of medical infrared thermography and its application in radiation protection and other medical fields.
The suspicion of mediastinal alterations, always includes in its initial study, the chest radiography. The identification of mediastinal alterations in the X-ray is a priority. The knowledge of the mediastinal references and the identification of their alterations allows the suspicion of a pathology specific to each of the mediastinal spaces. When the semiology of mediastinal lesions, their location and the three most frequent pathologies are taken into account, the possibility of having an etiological diagnosis increases[1]. This is a review article based on a detailed literature search, in which radiological mediastinal references are studied, with emphasis on the epidemiological data of each one of them.
Imaging technology plays a key role in guiding endovascular treatment of aortic aneurysm, especially in the complex thoracoabdominal aorta. The combination of high quality images with a sterile and functional environment in the surgical suite can reduce contrast and radiation exposure for both patient and operator, in addition to better outcomes. This presentation aims to describe the current use of this technique, combining angiotomography and intraoperative cone beam computed tomography, image “fusion” and intravascular ultrasound, to guide procedures and thus improve the intraoperative success rate and reduce the need for reoperation. On the other hand, a procedure is described to create customized 3D templates with the high-definition images of the patient’s arterial anatomy, which serve as specific guides for making fenestrated stents in the operating room. These customized fenestration templates could expand the number of patients with complex aneurysms treated minimally invasively.
Based on the characteristics of liquid lens sparse aperture imaging, a radiative multiplet array structure is proposed; a simplified model of sparse aperture imaging is given, and the analytical expression of the modulation transfer function is derived from the optical pupil function of the multiplet array structure; the specific distribution form of this multiplet array structure is given, and the structure parameters are approximated by the dimensionless method; the two types of radiative multiplet array structures are discussed, and the filling factor, redundancy, modulation transfer function and other characteristic parameters are calculated. The physical phenomena exhibited by the parametric scan are discussed, and the structural features and imaging characteristics of these two arrays are compared. The results show that the type-II structure with larger actual equivalent aperture and actual cutoff frequency and lower redundancy is selected when the average modulation transfer function and the IF characteristics of the modulation transfer function of the two structures are close to each other; the type-II structure has certain advantages in imaging; the conclusion is suitable for arbitrary enclosing circle size because the liquid lens-based multiplet array structure adopts dimensionless approximation parameters; compared with the composite toroidal structure, the radiative multiplet mirror structure has a larger actual cut-off frequency and actual equivalent aperture when the filling factor is the same.
Copyright © by EnPress Publisher. All rights reserved.