The project of returning farmland to forest is a new project of increasing farmers' income, ecological efficiency and
benefiting the country. The key to the success of returning farmland to forest project is to strictly control the key technologies such as regional planning, forest species selection, tree species selection, good seedling, structural configuration, meticulous soil preparation, serious planting, tending and management. According to the actual
situation of Yuanling County, suitable for the tree, choose the market prospects, fast-growing tree species afforestation,
reasonable adjustment of forest structure, ecological benefits and economic benefits simultaneously, take high-
quality high-yield and efficient forestry development. Returning farmland to forest project has played huge ecological benefits, economic and social benefits.
With the development of social economy, the current urban traffic problem is more prominent. In order to solve this problem very well, the idea of establishing intelligent traffic management came into being. The establishment of intelligent traffic management, cannot do without the signal launch and reception. Therefore, how to set up some wireless signal transmitting device in time to travel on the road motor vehicles to send traffic information and how to achieve full coverage of the signal and signal stability is our article to discuss the issue. For the first question, we must separate the motorway and non-motorway from all roads. Motorway lanes are usually straight and long. While the bends are usually just sidewalks or bike lanes (non-motorized lanes). So the 121 road can be clustered analysis, clustering of the two indicators for each road length (the distance between the adjacent points) and the collection point of density (by drawing, you can observe the more curved the denser the road collection point, so the road curvature into the collection point of the intensity), the result of clustering can get 48 motor lanes. And then through regress function regression and data fitting to achieve an approximate description of each type of motor vehicle description model, so that each road in a given latitude (latitude) coordinates to determine the latitude (longitude) coordinates and the corresponding altitude. For the problem of two, according to the meaning of the road to know the signal strength is only related to the distance between the sampling point and the launch device, so you can 'the motor vehicle between the signal reception is relatively close to' this indicator into ' The average of the distance between all the sampling points and the transmitting device is close to '. By reading the data will be latitude and longitude conversion distance length, so that the maximum value as small as possible. The position of the launcher can be obtained by programming by MATLAB. When considering the altitude, only the position of the transmitting device can be changed. (9.7824,56.7720), and the position coordinates when considering the altitude are D (9.7459, 56.7586, 73.5645), and the position coordinate of the signal device is B (9.7824, 56.7720). For question three, note the effect of the original signal device A on the result. We still use the average of the distance between all the sampling points of the road and the launcher to characterize the stability of the signal reception. The average distance of all non-motorized trains to the original signal device A is first determined, and then the average distance of all non-motorized lanes from the new signal device B is set, and the signal acceptance strength of the non-motorized lane can be used to characterize. And then use the same method in question two to determine the location of the new signal transmitter. Finally, the coordinates of the position of the new signal device are E (9.7459,56.7586,73.5645).
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
Control of key technological and benchmark flows of polymer fluids poses a number of challenges. Some of them are nowadays under active investigation and rather far from complete understanding. This review considers such phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics. We observe, shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes creeping in flow fields. In practical aspect this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery (EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of viscoelasticity in the polymer flooding is estimated. The observation is concluded by some new results on relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
There are several methods in the literature to find the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems. However, in all these methods, it is assumed that the product of two trapezoidal (triangular) fuzzy numbers will also be a trapezoidal (triangular) fuzzy number. Fan et al. (“Generalized fuzzy linear programming for decision making under uncertainty: Feasibility of fuzzy solutions and solving approach”, Information Sciences, Vol. 241, pp. 12–27, 2013) proposed a method for finding the fuzzy optimal solution of FFLP problems without considering this assumption. In this paper, it is shown that the method proposed by Fan et al. (2013) suffer from errors and to overcome these errors, a new method (named as Mehar method) is proposed for solving FFLP problems by modifying the method proposed by Fan et al. (2013) . To illustrate the proposed method, some numerical problems are solved.
Copyright © by EnPress Publisher. All rights reserved.