Cardiovascular imaging analysis is a useful tool for the diagnosis, treatment and monitoring of cardiovascular diseases. Imaging techniques allow non-invasive quantitative assessment of cardiac function, providing morphological, functional and dynamic information. Recent technological advances in ultrasound have made it possible to improve the quality of patient treatment, thanks to the use of modern image processing and analysis techniques. However, the acquisition of these dynamic three-dimensional (3D) images leads to the production of large volumes of data to process, from which cardiac structures must be extracted and analyzed during the cardiac cycle. Extraction, three-dimensional visualization, and qualification tools are currently used within the clinical routine, but unfortunately require significant interaction with the physician. These elements justify the development of new efficient and robust algorithms for structure extraction and cardiac motion estimation from three-dimensional images. As a result, making available to clinicians new means to accurately assess cardiac anatomy and function from three-dimensional images represents a definite advance in the investigation of a complete description of the heart from a single examination. The aim of this article is to show what advances have been made in 3D cardiac imaging by ultrasound and additionally to observe which areas have been studied under this imaging modality.
Based on Landsat–7ETM + images of 2007 and 2012 and Landsat–8 images of 2018, this study took Fuyang City, Anhui Province (Yingzhou District, Yingdong District, Yingquan District) as the research object, and made a quantitative analysis of land use/cover change in Fuyang City from 2007 to 2018 with the Environment for Visualizing Images (ENVI) software. According to the data of land use types in three phases, the article analyzes the development trend of various land use types and the main reasons for the changes of land use, which provides a certain basis for the urban planning and environmental construction of Fuyang City. The results show that with the rapid economic development and continuous improvement of the urbanization level in Fuyang City during 11 years, the area of various land types in the study area has changed greatly. The area of construction land area changed by 448.27 km2, with an increase of 543.57%; the area of arable land changed by 597.52 km2, with a decrease of 34.74%; the area of bare land changed by 26.00 km2, with a decrease of 80.68%. The changes were closely related to the rapid economic and social development in the study area. Under the influence of environmental protection policies and environmental awareness, the area of forest land changed by 85.00 km2, with an increase of 97.58%; the water area changed by 84.35 km2, with an increase of 201.39%.
With the increasing call for sustainable development, cities’ demand for green innovation has also been growing. However, relatively little research summarizes the influencing factors of urban green innovation. In this study, we conducted a visual analysis of 1193 research articles on green innovation in cities from the Web of Science core database using bibliometrics and visualization analysis. By analyzing co-occurrence, co-citation, and high-frequency keywords in the literature, we explored the current research status and development trends of influencing factors of urban green innovation and summarized the research in this field. The study found that collaboration among authors and institutions in this field needs to be strengthened to a certain extent. In addition, the study identified the research hotspots and frontiers in the field of urban green innovation, including “management”, “diffusion”, “smart city”, “indicator”, “sustainable city”, “governance”, and “environmental regulation”. Among them, “management”, “governance”, “indicator”, and “internet” are the research frontiers in this field, which are expected to have profound impacts on the future development of urban green innovation. The co-citation analysis results found that China has the highest research output in this field, followed by the United States, England, Australia, and Italy. In conclusion, this study uses CiteSpace software to identify important influencing factors and development trends of urban green innovation. Urban green innovation has gradually become a norm for social and collective behavior in the process of concretization, interdisciplinary development, and technological innovation. These findings have important reference value for promoting research and practice of urban green innovation.
During and after any disaster, a situation report (SITREP) is prepared, based on the Daily Incident Updates (DIU), as an initial decision support information base. It is observed that the decision support system and best practices are not optimized through the available formal reporting on disaster incidents. The rapidly evolving situation, misunderstood terms, inaccurate data and delivery delays of DIU are challenges to the daily SITREP. Multiple stakeholders stipulated with different tasks should be properly understood for the SITREP to initiate relevant response tasks. To fill this research gap, this paper identifies the weaknesses of the current practice and discusses the upgrading of the incident-reporting process using a freely available software tool, enabling further visualization, and producing a comprehensive timely output to share among the stakeholders. In this case, “Power-BI” (a data visualization software) is used as a 360-degree view of useful metrics—in a single place, with real-time updates while being available on all devices for operational decision-making. When a dataset is transformed into several analytical reports and dashboards, it can be easily shared with the target users and action groups. This article analyzed two sources of data, namely the Disaster Management Center (DMC) and the National Disaster Relief Service Center (NDRSC) of Sri Lanka. Senior managers of disaster emergencies were interviewed and explored social media to develop a scheme of best practices for disaster reporting, starting from just before the occurrence, and following the unfolding sequence of the disasters. Using a variety of remotely acquired imageries, rapid mapping, grading, and delineating impacts of natural disasters, were made available to concerned users.
With the in-depth development and widespread application of educational informatization, digital education has also become one of the important features of educational modernization. Designing and completing a visual teaching system based on Web technology is of great significance for promoting further reform and development of teaching, especially for achieving remote education, which has great application value. Based on visual teaching needs analysis and B/S architecture, effective system development is achieved through Access database. According to the specific needs of teaching functions, the system can be divided into multiple modules, and the management and login of teaching resources for users can also be smoothly achieved. This has important research value for achieving the goal of remote visualization of teaching.
Classical photography, aesthetic beauty, and scientific analysis are related. This article explores composition, light manipulation, and emotion to examine the aesthetic components that characterize classical traditions. Pioneers like Julia Margaret Cameron are revealed from a historical perspective, and Ansel Adams' landscapes are the pinnacle of harmony and majesty. Scientific discoveries illuminate the psychology of authenticity and engagement in the digital age while promoting visual literacy. The timeless influence of artistry in the visual narrative is underscored by classic aesthetics, which connect the past, present, and resound through great works.
Copyright © by EnPress Publisher. All rights reserved.