This paper uses quantitative research methods to explore the differences in the impact of virtual influencers on different consumer groups in the context of technological integration and innovation. The study uses DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering technology to segment consumers and combines social media behavior analysis with purchase records to collect data to identify differences in consumer behavior under the influence of virtual influencers. Consumers’ emotional resonance and brand awareness information about virtual influencers are extracted through sentiment analysis technology. The study finds that there are significant differences in the influence of virtual influencers on different consumer groups, especially in high-potential purchase groups, where the influence of virtual influencers is strong but short-lived. This paper further explores the deep integration of virtual influencer technology with new generation information technologies such as 5G and artificial intelligence, and emphasizes the importance of such technological integration in enhancing the endogenous and empowering capabilities of virtual influencers. The research results show that technological integration and innovation can not only promote the development of virtual influencers, but also provide new technical support for infrastructure construction, especially in the fields of smart cities and industrial production. This paper provides a new theoretical perspective for the market application of virtual influencers and provides practical support for the application of virtual technology in infrastructure construction.