Analyzing ecosystem service values (ESV) is crucial for achieving sustainable development. The main objective of this study was to assess the ecosystem services of the Cisadane watershed in Indonesia, with specific goals: (i) examining the spatiotemporal dynamics of ESV using multi-year land use and land cover (LULC) data from 2000 to 2021, (ii) exploring trade-offs and synergies among various ecosystem services, and (iii) investigating the sensitivity of ESV to changes in LULC. The results unveiled a significant decrease in forested areas (21.2%) and rice fields (10.2%), leading to a decline in ESV of $196.37 billion (33.17%) from 2010 to 2021. Throughout the period from 2000 to 2021, interactions between ESV were mainly synergistic. Projected from the baseline year (2021), the decline in ESV is expected to persist, ranging from $24.78 billion to $124.28 million by 2030 and from $45.78 billion to $124.28 million by 2050. The total estimated ecosystem values exhibited an inelastic response in terms of ecosystem value coefficients. The study also emphasizes an inelastic response in total estimated ESV coefficient concerning ecosystem value coefficients. These findings underscore the urgent need for targeted conservation efforts and sustainable land management practices to mitigate the further decline in ecosystem services and safeguard the long-term well-being of the Cisadane watershed and its inhabitants.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
Mangrove forests are vital to coastal protection, biodiversity support, and climate regulation. In the Niger Delta, these ecosystems are increasingly threatened by oil spill incidents linked to intensive petroleum activities. This study investigates the extent of mangrove degradation between 1986 and 2022 in the lower Niger Delta, specifically the region between the San Bartolomeo and Imo Rivers, using remote sensing and machine learning. Landsat 5 TM (1986) and Landsat 8 OLI (2022) imagery were classified using the Support Vector Machine (SVM) algorithm. Classification accuracy was high, with overall accuracies of 98% (1986) and 99% (2022) and Kappa coefficients of 0.97 and 0.98. Healthy mangrove cover declined from 2804.37 km2 (58%) to 2509.18 km2 (52%), while degraded mangroves increased from 72.03 km2 (1%) to 327.35 km2 (7%), reflecting a 354.46% rise. Water bodies expanded by 101.17 km2 (5.61%), potentially due to dredging, erosion, and sea-level rise. Built-up areas declined from 131.85 km2 to 61.14 km2, possibly reflecting socio-environmental displacement. Statistical analyses, including Chi-square (χ2 = 1091.33, p < 0.001) and Kendall’s Tau (τ = 1, p < 0.001), showed strong correlations between oil spills and mangrove degradation. From 2012 to 2022, over 21,914 barrels of oil were spilled, with only 38% recovered. Although paired t-tests and ANOVA results indicated no statistically significant changes at broad scales, localized ecological shifts remain severe. These findings highlight the urgent need for integrated environmental policies and restoration efforts to mitigate mangrove loss and enhance sustainability in the Niger Delta.
Copyright © by EnPress Publisher. All rights reserved.