The aim of this paper is to introduce a research project dedicated to identifying gaps in green skills by using the labor market intelligence. Labor Market Intelligence (LMI). The method is primarily descriptive and conceptual, as the authors of this paper intend to develop a theoretical background and justify the planned research using Natural Language Processing (NLP) techniques. This research highlights the role of LMI as a tool for analysis of the green skills gaps and related imbalances. Due to the growing demand for eco-friendly solutions, there arises a need for the identification of green skills. As societies shift towards eco-friendly economic models, changes lead to emerging skill gaps. This study provides an alternative approach for identification of these gaps based on analysis of online job vacancies and online profiles of job seekers. These gaps are contextualized within roles that businesses find difficult to fill due to a lack of requisite green skills. The idea of skill intelligence is to blend various sources of information in order to overcome the information gap related to the identification of supply side factors, demand side factors and their interactions. The outcomes emphasize the urgency of policy interventions, especially in anticipating roles emerging from the green transition, necessitating educational reforms. As the green movement redefines the economy, proactive strategies to bridge green skill gaps are essential. This research offers a blueprint for policymakers and educators to bolster the workforce in readiness for a sustainable future. This article proposes a solution to the quantitative and qualitative mismatches in the green labor market.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
Arabic rhetoric has traditionally relied on ancient texts and human interpretation for teaching purposes. The study investigates ChatGPT’s ability to analyze and interpret Arabic rhetorical devices, specifically examining its capacity to handle cultural and contextual elements in rhetorical analysis. Drawing on institutional implementation frameworks and recent educational technology research, this study examines policy considerations for Arabic rhetoric education in an AI-driven environment, with a particular focus on sustainable digital infrastructure development and systematic reforms needed to support AI integration. The study employed the comparative approach to analyze eight rhetorical examples, including metaphors (“Zaid is a lion”), similes (“Someone is a sea”), and metonymy (“A person full of ash”), then compare ChatGPT’s interpretations with traditional explanations from classical Arabic rhetoric texts, particularly “Dala’il al-I’jaaz” by al-Jurjani. The results demonstrate that ChatGPT can provide basic interpretations of simple rhetorical devices, but it struggles with understanding cultural contexts and multiple layers of meaning inherent in Arabic rhetoric. The findings indicate that AI tools, despite their potential for modernizing rhetoric education, currently serve best as supplementary teaching aids rather than replacements for traditional interpretative methods in Arabic rhetoric instruction.
Copyright © by EnPress Publisher. All rights reserved.