Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
With the increasing demand for sustainable energy, advanced characterization methods are becoming more and more important in the field of energy materials research. With the help of X-ray imaging technology, we can obtain the morphology, structure and stress change information of energy materials in real time from two-dimensional and three-dimensional perspectives. In addition, with the help of high penetration X-ray and high brightness synchrotron radiation source, in-situ experiments are designed to obtain the qualitative and quantitative change information of samples during the charge and discharge process. In this paper, X-ray imaging technology based on synchrotron and its related applications are reviewed. The applications of several main X-ray imaging technologies in the field of energy materials, including X-ray projection imaging, transmission X-ray microscopy, scanning transmission X-ray microscopy, X-ray fluorescence microscopy and coherent diffraction imaging, are discussed. The application prospects and development directions of X-ray imaging in the future are prospected.
Contemporary infrastructure research has its origins in the late 1980s as attempts were made to measure the economic impact of public expenditures with early mixed results. In the 1990s, infrastructure assumed greater importance as a policy solution to improve economic performance in low-income economies particularly by multilateral development and official development agencies. This interest led to greater research interest with the examination of infrastructure and economic development, foreign direct investment, the role of institutions and capital markets, procurement, regional economic effects and more recently, the productivity of public investment in specific regions and industries.
This article identifies subjects that warrant further research in the future particularly the shortfall in current investment levels and how this will be met. This is a challenge for both low and high-income countries with fiscal and public debt constraints requiring governments to tap alternative sources of finance. Policy options available to government include wider use of bond markets and private participation in infrastructure provision and management. Other problems facing government include optimism bias and forecasting error that is a particular problem for projects in the transport sector.
Many other research opportunities remain to be explored and this article is designed to provide an overview of several of the subjects that would benefit from further research at the present time.
Coal is important basic energy and important raw materials, the development of coal industry to support the rapid development of the national economy. In the 1950s and 1960s, the proportion of coal in China's primary energy production and consumption structure accounted for 90% and 80% respectively, and the proportion of coal in 2004 was 75.6% and 67.7% respectively. In recent years, with the rapid development of fully mechanized mining equipment manufacturing technology, fully mechanized mining equipment to heavy, strong and automated, so that the reliability of the equipment is guaranteed, a strong impetus to the development of large mining technology, new round of coal mining technology revolution, the current in the East, Jincheng and other mining areas have been the first in the thick coal seam f = 1.5-5 use of large mining height fully mechanized mining equipment, to achieve the highest efficiency, the lowest cost of tons of coal. The main points of this paper are: in the production of coal enterprises to improve the competitiveness of the coal market. Conditions and conditions of coal storage conditions should be allowed to give priority to the use of large mining and mining methods.
The development of flexible, wearable electronic devices is one of the future directions of technology development. Flexible conductive materials are important supporting materials for wearable electronic devices. Polymer has excellent flexibility; it is an important way to prepare flexible conductors from polymer-based conductive composites. In this paper, the research progress of polymer-based flexible conductive composites is summarized in terms of preparation and characterization methods. The key factors to realize flexible conductors are put forward, namely, the maintenance of excellent polymer elasticity and the realization of stability. The design and preparation of the extensible conductor with high-elasticity matrix and nanofiller are introduced in detail, and the problems in the current research are summarized.
Benzoxazine resin, a new type of phenolic resin, has many advantages, such as a strong molecular design, no small molecular release in the curing process, excellent thermal stability and mechanical properties, and a high residual carbon ratio. Thus, it is important for electronic communication industry matrix material. To meet the needs of high-frequency and high-speed communication technology for low-dielectric polymer resin, the low-dielectric modification of benzoxazine resin is of great significance to the high frequency and high-speed propagation of the signal, which attracts a wide range of materials researchers’ attention. In this paper, we review a series of studies on the low dielectric modification of benzoxazine resin in recent years, including the synthesis of new monomers, inorganic - organic hybridization, copolymerization with other resins, and low molecular weight benzoxazine resin research trends.
Copyright © by EnPress Publisher. All rights reserved.