Inequity in infrastructure distribution and social injustice’s effects on Ethiopia’s efforts to build a democratic society are examined in this essay. By ensuring fair access to infrastructure, justice, and economic opportunity, those who strive for social justice aim to redistribute resources in order to increase the well-being of individuals, communities, and the nine regional states. The effects that social inequity and injustice of access to infrastructure have on Ethiopia’s efforts to develop a democratic society were the focus of the study. Time series analysis using principal component analysis (PCA) and composite infrastructure index (CII), as well as structural equation modeling–partial least squares (SEM-PLS), were necessary to investigate this issue scientifically. This study also used in-depth interviews and focus group discussions to support the quantitative approach. The research study finds that public infrastructure investments have failed or have been disrupted, negatively impacting state- and nation-building processes of Ethiopia. The findings of this research also offer theories of coordination, equity, and infrastructure equity that would enable equitable infrastructure access as a just and significant component of nation-building processes using democratic federalism. Furthermore, this contributes to both knowledge and methodology. As a result, indigenous state capability is required to assure infrastructure equity and social justice, as well as to implement the state-nation nested set of policies that should almost always be a precondition for effective state- and nation-building processes across Ethiopia’s regional states.
Agriculture is an industry that plays an essential role in economic development towards eliminating poverty issues, but foreign direct investment (FDI) inflows to this sector remain modest in Vietnam. This study analyzed the determinants of foreign direct investment in the agricultural sector into the Southern Key Economic Zone (KEZ) of Vietnam, which is considered the foreign direct investment magnet of Vietnam, but its FDI inflows into the agricultural sector have been consistently low, and has shown a downward trend in recent years. The study was based on a sample of 129 foreign investors of a total of 164 multinational enterprises (MNEs) in the agricultural sector, including representatives of the Board of Directors and representatives at the department level. The Partial Least Squares Structural Equation modeling (PLS-SEM) approach was used to test the hypotheses. Findings indicated that FDI attraction policies have the strongest impact on FDI inflows. This was followed by infrastructure, regional agriculture policies, public service quality, natural conditions, and human resources. This study suggests policy recommendations to improve foreign direct investment inflows into the agricultural sector of the Southern Key Economic Zone (KEZ) of Vietnam.
Technology development in the agricultural sector is important in the development of Thailand’s economy. The purpose of this research was to study the approach of guidelines for future agricultural technology development to increase productivity in the Agricultural sector in order to develop a structural equation model. The research applied mixed-methodology. Qualitative research by in depth interview from 9 experts and focus group with 11 successful businesspersons for approve this model. The quantitative data gather from firm, in the 500 of agricultural sector by using questionnaire, using statistical tests of descriptive analysis, inferential analysis, and multivariate analysis. The research found guidelines for future agricultural technology development to increase productivity in the Agricultural sector composed of 4 latent. The most important item of each latent were as following: 1) Agrobiology Technology (= 4.41), in important item as choose seeds that for disease resistance and tolerate the environment to suit the cultivation area, 2) Environmental Assessment (= 4.37),, in important item as survey of cultivated areas according to topography with geographic information system, 3) Agricultural Innovation (= 4.30), in important item as technology reduces operational procedures, reduce the workforce and can reduce operating costs, and 4) Modern Management Systems (= 4.13), in important item as grouping and manage as a cooperative to mega farms. In addition, the hypothesis test found that the difference in manufacturing firm sizes. Medium and Small size and large size revealed overall aspects that were significantly different at the level of 0.05. The analysis of the developed structural equation model found that there was in accordance and fit with the empirical data and passed the evaluation criteria. Its Chi-square probability level, relative Chi-square, the goodness of fit index, and root mean square error of approximation were 0.062, 1.165, 0.961, and 0.018, respectively.
This investigation extends into the intricate fabric of customer-based corporate reputation within the banking industry, applying advanced analytics to decipher the nuances of customer perceptions. By integrating structural equation modeling, particularly through SmartPLS4, we thoroughly examine the interrelations of perceived quality, competence, likeability, and trust, and how they culminate in customer satisfaction and loyalty. Our comprehensive dataset is drawn from a varied demographic of banking consumers, ensuring a holistic view of the sector’s reputation dynamics. The research reveals the profound influence of these constructs on customer decision-making, with likeability emerging as a critical driver of satisfaction and allegiance to the bank. We also rigorously test our model’s internal consistency and convergent validity, establishing its reliability and robustness. While the direct involvement of Business Intelligence (BI) tools in the research design may not be overtly articulated, the analytical techniques and data-driven approach at the core of our methodology are synonymous with BI’s capabilities. The insights garnered from our analysis have direct implications for data-driven decision-making in banking. They inform strategies that could include enhancing service personalization, refining reputation management, and improving customer retention efforts. We acknowledge the need to more explicitly detail the role of BI within the research process. BI’s latent presence is inherent in the analytical processes employed to interpret complex data and generate actionable insights, which are crucial for crafting targeted marketing strategies. In summary, our research not only contributes to academic discourse on marketing and customer perception but also implicitly demonstrates the value that BI methodologies bring to understanding and influencing consumer behavior in the banking sector. It is this blend of analytics and marketing intelligence that equips banks with the strategic leverage necessary to thrive in today’s competitive financial landscape.
Copyright © by EnPress Publisher. All rights reserved.