Green cosmetics made from organic ingredients are becoming increasingly popular due to their environmentally friendly nature. However, research on consumer behavior towards green cosmetics is rare, especially in developing countries like Pakistan. Previous studies have primarily focused on female consumers, and little is known about the behavior of male consumers. Therefore, this research aims to investigate the behavior of both male and female consumers towards green cosmetic products and analyze the factors that affect their purchase behavior. This study employs a quantitative approach with deductive reasoning and collects data through a questionnaire from major cities in Pakistan. The study finds that eco-awareness, social influence, price-quality instructions, health consciousness, and the need for uniqueness significantly influence consumer purchase behavior when buying green cosmetics. Interestingly, price sensitivity does not significantly affect consumer purchase behavior as consumers are willing to pay for high-quality green cosmetics. Based on the findings, the study recommends promoting eco-awareness and health consciousness among consumers through educational campaigns and workshops launched by the government and the private sector. Future research can explore factors such as age, gender, and specific generations like millennials and Generation Z, as well as packaging, branding, and product design to promote environmentally friendly and health-conscious products. Additionally, comparative studies between countries can identify universal and region-specific factors, and examining the overall impact of green cosmetic products on the environment can highlight areas for improvement in sustainability.
This study empirically examines the complex relationship between materialism and economic motivation, proposing an inverted U-shaped relationship. The research analyzes three dimensions of materialism: happiness pursuit, social recognition, and uniqueness, and their impact on economic motivation. The findings suggest that materialism, when balanced, positively influences economic motivation without causing adverse effects. This relationship remains consistent across demographic characteristics and life satisfaction levels, challenging the traditional negative view of materialism. The implications of these findings extend to marketing strategies, policy design, and infrastructure development, offering actionable insights for real-world contexts. This research underscores the importance of balancing materialistic values to foster sustainable economic growth and well-being.
Finding the right technique to optimize a complex problem is not an easy task. There are hundreds of methods, especially in the field of metaheuristics suitable for solving NP-hard problems. Most metaheuristic research is characterized by developing a new algorithm for a task, modifying or improving an existing technique. The overall rate of reuse of metaheuristics is small. Many problems in the field of logistics are complex and NP-hard, so metaheuristics can adequately solve them. The purpose of this paper is to promote more frequent reuse of algorithms in the field of logistics. For this, a framework is presented, where tasks are analyzed and categorized in a new way in terms of variables or based on the type of task. A lot of emphasis is placed on whether the nature of a task is discrete or continuous. Metaheuristics are also analyzed from a new approach: the focus of the study is that, based on literature, an algorithm has already effectively solved mostly discrete or continuous problems. An algorithm is not modified and adapted to a problem, but methods that provide a possible good solution for a task type are collected. A kind of reverse optimization is presented, which can help the reuse and industrial application of metaheuristics. The paper also contributes to providing proof of the difficulties in the applicability of metaheuristics. The revealed research difficulties can help improve the quality of the field and, by initiating many additional research questions, it can improve the real application of metaheuristic algorithms to specific problems. The paper helps with decision support in logistics in the selection of applied optimization methods. We tested the effectiveness of the selection method on a specific task, and it was proven that the functional structure can help the decision when choosing the appropriate algorithm.
Copyright © by EnPress Publisher. All rights reserved.