Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
Purpose: This review mainly aims to identify the lean practice conducted in hospitals, determining what problems lean practice can be helpful to solve in the hospitals. Data sources: Four electronic databases (Scopus, Web of science, Medline, and PubMed) were conducted for searching related literature in this review. Study selection: These studies in the hospitals that related lean healthcare practice and contained outcome variables were included. Data extraction: Related information such as research design, countries, lean tools, outcome variables, results were extracted. Results of data synthesis: 20 eligible articles were identified in this review. There was 20% lean practice being conducted in emergency department of hospitals in this review. Six cases have implemented lean in Brazilian hospitals. There were 12 cases implemented lean practice through Value Stream Mapping. Conclusion: Lean practices were highly valued in Brazilian hospitals, and it was frequently implemented in hospital emergency department. Value Stream Mapping and process mapping were the most commonly used lean tool. Waiting time, lead time and Length of Hospital Stay (LOS) were the primary indicators reflecting improvements in this review.
Physical sampling of water on site is necessary for various applications like drinking water quality checking in lakes and checking for contaminants in freshwater systems. The use of water surface vehicles is a promising technology for monitoring and sampling water bodies, and they offer several advantages over traditional monitoring methods. This project involved designing and integrating a drone controller, water collection sampling contraption unit, and a surveillance camera system into a water surface vehicle (WSV). The drone controller unit is used to operate the boat from the starting location until the location of interest and then back to the starting location. The drone controller has an autopilot system where the operator can set a course and be able to travel following the path set, whereas the WSV will fight the external forces to keep itself in the right position. The water collection sampling unit is mounted onto WSV so when it travels to the location, it can start collecting and holding water samples until it returns to the start location. The field of view (FOV) surveillance camera helps the operator to observe the surrounding location during the operation. Experiments were conducted to determine the operational capabilities of the robot boat at the Ayer Keroh Lake. The water collection sampling contraption unit collected samples from 44 targeted areas of the lake. The comprehensive examination of 14 different water quality parameters were tested from the collected water samples provides insights into the factors influencing the pollution and observation of water bodies. The successful design and development of a water surface surveillance and pollution tracking vehicle marks the key achievements of this study. The developed collection and surveillance unit holds the potential for further refinement and integration onto various other platforms. They are offering valuable assistance in water body management, coastal surveillance, and pollution tracking. This system opens up new possibilities for comprehensive water body assessments, contributing to the advancement of sustainable and efficient water testing. Through careful sampling efforts, a thorough overview of the substances presents in the water collected from Ayer Keroh Lake has been compiled. This in-depth analysis provides important insights into the lake’s current condition, offering valuable information about its ecological health.
Copyright © by EnPress Publisher. All rights reserved.