Taking the geographic information industry as the research object, using the authorized invention patent data, this paper puts forward the research method of industrial innovation chain structure based on the geographic information industry chain. Then, from the perspective of overall structure and specific regional structure, the development status of the innovation chain is quantitatively evaluated, which is helpful to all countries in the world. The structural integrity and leading links of the innovation chain especially in China, the United States and Japan are compared and analyzed. The results show that: (1) from the perspective of the overall structure, the global innovation chain presents an “inverted triangle” structure due to the weak innovation ability of downstream links. From the perspective of specific regional structure, the innovation chain of geographic information industry in most countries and regions is incomplete, and there are broken links or isolated links. The global innovation chain except China has cracks between the upstream and downstream due to the relative weakness of the midstream links, showing “hourglass-shaped” structure with a wide upper part, narrow lower part and narrow middle part. (2) Relatively speaking, China’s industrial innovation chain is relatively complete, and the midstream link has significant comparative advantages in the global market. However, the industry university research cooperation in the innovation chain is weak, the degree of marketization is low, and the technological competitiveness lags behind that of the United States.
This exploratory study aims to identify the main characteristics and relationships between artificial intelligence (AI) and broadband development in Asia and the Pacific. Broadband networks are the foundation and prerequisite for the development of AI. But what types of broadband networks would be conducive are not adequately discussed so far. Furthermore, in addition to broadband networks, other factors, such as income level, broadband quality, and investment, are expected to influence the uptake of AI in the region. The findings are synthesized into a set of policy recommendations at the end of the article, which highlights the need for regional cooperation through an initiative, such as the Asia-Pacific Information Superhighway (AP-IS).
The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. This study focuses on riverbed cities, aiming to analyze flood occurrences and their influencing factors. Through an extensive literature review, five key criteria commonly associated with flood events were identified: slope height, distance from rivers, topographic index, and runoff height. Utilizing the network analysis process within Super Decision software, these factors were weighted, and a final flood risk map was generated using the simple weighted sum method. 75% of the data was used for training, and 25% of it was used for testing. Additionally, vegetation changes were assessed using Landsat imagery from 2000 and 2022 and the normalized difference vegetation index (NDVI). The focus of this research is Qirokarzin city as a case study of riverbed cities, situated in Fars province, with Qir city serving as its central hub. Key rivers in Qirokarzin city include the Qara Aghaj River, traversing the plain from north to south; the primary Mubarak Abad River, originating from the east; and the Dutulghaz River, which enters the eastern part of the plain from the southwest of Qir, contributing to plain nourishment during flood events. The innovation of this paper is that along with the objective to produce a reliable delineation of hazard zones, a functional distinction between the loading and the response system (LS and RS, respectively) is made. Results indicate the topographic index as the most influential criterion, delineating Qirokarzin city into five flood risk zones: very low, low, moderate, high, and very high. Notably, a substantial portion of Qirokarzin city (1849.8 square kilometers, 8.54% of the area) falls within high- to very-high flood risk zones. Weighting analysis reveals that the topographic humidity index and runoff height are the most influential criteria, with weights of 0.27 and 0.229, respectively. Conversely, the height criterion carries the least weight at 0.122. Notably, 46.7% of the study area exhibits high flood intensity, potentially attributed to variations in elevation and runoff height. Flood potential findings show that the middle class covers 32.3%, indicating moderate flood risk due to changes in elevation and runoff height. The low-level risk is observed sporadically from the east to the west of the study area, comprising 12.4%. Analysis of vegetation changes revealed a significant decline in forest and pasture cover despite agricultural and horticultural development, exacerbating flood susceptibility.
The Ecuadorian electricity sector encompasses generation, transmission, distribution and sales. Since the change of the Constitution in Ecuador in 2008, the sector has opted to employ a centralized model. The present research aims to measure the efficiency level of the Ecuadorian electricity sector during the period 2012–2021, using a DEA-NETWORK methodology, which allows examining and integrating each of the phases defined above through intermediate inputs, which are inputs in subsequent phases and outputs of some other phases. These intermediate inputs are essential for analyzing efficiency from a global view of the system. For research purposes, the Ecuadorian electricity sector was divided into 9 planning zones. The results revealed that the efficiency of zones 6 and 8 had the greatest impact on the overall efficiency of the Ecuadorian electricity sector during the period 2012–2015. On the other hand, the distribution phase is the most efficient with an index of 0.9605, followed by sales with an index of 0.6251. It is also concluded that the most inefficient phases are generation and transmission, thus verifying the problems caused by the use of a centralized model.
This article presents a methodology to perform quality analysis on the cadastral map, based on the tools provided by open (public or free) license geographic information systems (GIS). The errors presented in the cadastral map have a direct impact on the information systems, which can lead to erroneous decisions and to an increase in the costs of maintenance and updating of spatial data. The methodology developed was used and tested by Costa Rica’s Cadastre and Registry Regularization Program; as a product of this program, a continuous cadastral map has been created for Costa Rica, on which cadastral and registry transactions will be processed within the National Registry of Costa Rica. The methodology allows detecting, locating and classifying errors in the cadastral map for easily correcting, so that this map correctly represents the reality of the properties that conform it.
In this paper, a detailed mineralogical and genesis investigation have been carried out in the seven locations of the Iron Ore in Hazara area. Thick bedded iron ore have been observed between Kawagarh Formation and Hangu Formation i.e., Cretaceous-Paleocene boundary. At the base of Hangu Formation, variable thickness of these lateritic beds spread throughout the Hazara and Kohat-Potwar plateau. This hematite ore exists in the form of unconformity. X-ray diffraction technique (XRD), X-ray fluorescence spectrometry (XRF), detailed petroghraphic study and scanning electron microscope (SEM) techniques indicated that those iron bears minerals including hematite, chamosite and quartz, albite, clinochlore, illite-montmorillonite, kaolinite, calcite, dolomite, whereas ankerite are the impurities present in these beds. The X-ray fluorescence (XRF) results show that the total Fe2O3 ranges from 39 to 56%, with high silica and alumina ratio of less than one. Beneficiation requires for significant increase in ore grade. The petroghraphic study revealed the presence of ooids fragments as nuclei of other ooids with limited clastic supply, which indicate high energy shallow marine depositional setting under warm and humid climate. The overall results show that Langrial Iron Ore is a low-grade iron ore which can be upgraded up to 62% by applying modern mining techniques so as to fulfill steel requirements of the country.
Copyright © by EnPress Publisher. All rights reserved.