The human brain has been described as a complex system. Its study by means of neurophysiological signals has revealed the presence of linear and nonlinear interactions. In this context, entropy metrics have been used to uncover brain behavior in the presence and absence of neurological disturbances. Entropy mapping is of great interest for the study of progressive neurodegenerative diseases such as Alzheimer’s disease. The aim of this study was to characterize the dynamics of brain oscillations in such disease by means of entropy and amplitude of low frequency oscillations from Bold signals of the default network and the executive control network in Alzheimer’s patients and healthy individuals, using a database extracted from the Open Access Imaging Studies series. The results revealed higher discriminative power of entropy by permutations compared to low-frequency fluctuation amplitude and fractional amplitude of low-frequency fluctuations. Increased entropy by permutations was obtained in regions of the default network and the executive control network in patients. The posterior cingulate cortex and the precuneus showed differential characteristics when assessing entropy by permutations in both groups. There were no findings when correlating metrics with clinical scales. The results demonstrated that entropy by permutations allows characterizing brain function in Alzheimer’s patients, and also reveals information about nonlinear interactions complementary to the characteristics obtained by calculating the amplitude of low frequency oscillations.
The integration of medical images is the process of registering and fusing them to obtain a greater amount of diagnostic information. In this work an analysis is performed for the integration of images obtained through computed axial tomography and magnetic resonance imaging, for which a tool was developed in the Matlab program, where the registration is implemented through equivalent features; in addition, the pairs of images are compared by several fusion rules, with a view to identify the best algorithm in which the resulting fused image contains the most information from the original representations.
In the present research work, we investigated the use of the image intensifier in the extraction of radiopaque foreign bodies in traumatology. First of all, it is necessary to clarify that this method constitutes an essential component of practically generalized use, in which low current level radiation is used, that is, fluoroscopic radiation, so that it can be applied for a considerably longer time than that of the longest radiographic exposure. This tool works with a tube intended for this purpose, which is known as fluoroscopy. The radiations from the tube pass through the patient and reach the serigraph, on which the image intensifier or fluoroscopic screen is mounted. In the latter case, this is where the chain ends, since it is on this screen that the image is formed and where the physician directly observes the region to be studied. It is also necessary to define that a foreign body is any element foreign to the body that enters it, either through the skin or through any natural orifice such as the eyes, nose, throat, preventing its normal functioning. It was possible to obtain as a result that the advantages of fluoroscopic navigation are the reduction of surgical time and the amount of irradiation, which goes from about 140 seconds without navigation to only 8 seconds, which is a substantial difference. Among the conclusions, it was possible to highlight that in the case of a radiopaque object, it is essential to have an image intensifier for localization of the foreign body during surgery; while in the case of a radiolucent foreign body, it is more advisable to locate it through the clinic, since these tend to form granulomas.
No less than 60% of timber production in Peru’s natural forests is the result of informal or illegal extractive activities that, by definition, are not sustainable. This article aims to demonstrate that even legitimate timber, such as timber harvested in more than 6 million hectares of forest concessions, does not meet the basic requirements of sustainable forest management. Forestry legislation itself, which does not emphasize forest management, institutional weaknesses and the socioeconomic environment are the main causes. In addition, the cutting cycles and the authorized minimum diameters, among other practices, do not allow the renewal of the resource and increase its degradation.
There are numerous studies reported on the usage of the sapindus emarginatus (SE) fruit in cancer and other treatments in the past few years. In this study, crude SE fruit extract was prepared and it was further used to synthesis gold nanoparticles (Au Nps). The synthesized Au Nps were left embedded in the SE fruit extract. The Au Nps embedded in the SE fruit extract (SE-Au Nps) were characterized using UV-Visiable Spectroscopy, Centrifugal Particle Size analyzer (CPS), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). MTT assay was carried out for both SE fruit extract and SE-Au Nps on MCF7 breast cancer cell line and thus compared. The UV-Visible Absorbance for the SE-Au Nps was obtained at 543 nm. The centrifugal particle size analysis of the Au Nps embedded in SE fruit extract showed the size of the nanoparticles to be widely varying with higher fraction of particles between the size ranges of 15 to 20 nm. The morphology of the Au Nps embedded in SE fruit extract was observed using SEM. The presence of Au Nps in SE fruit extract was confirmed using FTIR. The results of the MTT assay on MCF7 breast cancer cell line proved that the % cell viability was less for SE-Au Nps than that of the SE fruit extract alone. Thus, the antiproliferative activity of the SE fruit extract was significantly enhanced by embedding it with Au Nps and it can be effectively used in therapeutic applications after further studies.
Major spices crops such as black pepper (Piper nigrum L.), cardamom (Elettaria cardamomum Maton.) and turmeric (Curcuma longa L.) production in India, is sustained losses due to several reasons. Among them, one of the major constraints are nematode infesting diseases, which causes significant yield losses and affecting their productivity. The major nematode pests infesting these crops include burrowing nematode Radopholus similis; root knot nematode, Meloidogyne incognita and M. javanica on black pepper. Whereas, lesion nematode, Pratylenchus sp., M. incognita and R. similis infesting cardamom and turmeric crops. Black pepper is susceptible to a number of diseases of which slow decline caused by R. similis and M. incognita or Phytophthora capsici either alone and in combination and root knot disease caused by Meloidogyne spp. are the major ones. Root knot disease caused by Meloidogyne spp. is major constraints in the successful cultivation and production in cardamom. Turmeric is susceptible to a number of diseases such as brown rot disease is caused by Fusarium sp. and lesion nematode, Pratylenchus sp. and root knot disease caused by M. incognita. Adoption of integrated pest management schedules is important in these crops since excessive use of pesticides could lead to pesticide residues in the produce affecting human health and also causing other ecological hazards.
Copyright © by EnPress Publisher. All rights reserved.