World Health Organization. The global dementia observatory reference guide world health organization [Internet]. Geneva, Switzerland; 2018. Available from: https://apps.who.int/iris/bitstream/handle/ 10665/272669/WHO-MSD-MER-18.1-eng.pdf
Takeuchi Y, Ariza-Araujo Y, Prada S. P3-349: Prevalence estimates of dementia in Colombia (2005–2020): Transitions and stage of disease. Alzheimer’s & Dementia 2014; 10(4S): 758. doi: 10.1016/j.jalz.2014.05.1442.
Prada SI, Takeuchi Y, Ariza Y. Costo monetario del tratamiento de la enfermedad deAlzheimer en Colombia (Spanish) [Monetary cost of treatment of Alzheimer’s disease in Colombia]. Acta Neurológica Colombiana 2014; 30(4).
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nature Neuroscience 2020; 23(10): 1183–1193.
Vermunt L, Sikkes SAM, van den Houtet A, et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimer’s & Dementia 2019; 15(7): 888–898. doi: 10.1016/j.jalz.2019.04.001
Dickerson BC, Agosta F, Filippi M. fMRI in Neurodegenerative diseases: From scientific insights to clinical applications. In: fMRI techniques and protocols. New York: Humana Press; 2016. p. 699–739. doi: 10.1007/978-1-4939-5611-1_23.
Agosta F, Pievani M, Geroldi C, et al. Resting state fMRI in Alzheimer’s disease: Beyond the default mode network. Neurobiology of Aging 2012; 33(8): 1564–1578. doi: 10.1016/j.neurobiolaging.2011.06.007.
Badhwar AP, Tam A, Dansereau C, et al. Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2017; 8(1): 73–85. doi: 10.1016/j.dadm.2017.03.007
Weiler M, Aya F, Lilian FPM, et al. Default mode, executive function, and language functional connectivity networks are compromised in mild Alzheimer’s disease. Current Alzheimer Research 2014; 11(3): 274–282. doi: 10.2174/1567205011666140131114716.
Zhao Q, Lu H, Metmer H, et al. Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer’s disease. Brain Research 2018; 1678: 262–272. doi: 10.1016/j.brainres.2017.10.025
Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychology Review 2014; 24(1): 49–62. doi: 10.1007/s11065-014-9249-6
Lv H, Wang Z, Tong E, et al. Resting-state functional MRI: Everything at Nonexperts have always wanted to know. American Journal of Neuroradiology 2018; 39(8): 1390–1399. doi: 10.3174/ajnr.A5527
Yang L, Yan Y, Wang Y, et al. Gradual disturbances of the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF in Alzheimer spectrum. Frontiers in Neuroscience 2018; 12: 975. doi: 10.3389/fnins.2018.00975.
Poldrack PA. The role of fMRI in Cognitive Neuroscience: Where do we stand? Current Opinion in Neurobiology 2008; 18(2): 223–227. doi: 10.1016/j.conb.2008.07.006
Timme NM, Lapish C. A tutorial for information theory in neuroscience. eNeuro 2018; 5(3). doi: 10.1523/ENEURO.0052-18.2018
Moguilner S, García AM, Sanz Perl Y, et al. Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study. Neuroimage 2021; 225: 117522. doi: 10.1016/j.neuroimage.2020.117522
Yang A, Tsai SJ, Lin C, et al. A strategy to reduce bias of entropy estimates in resting-state fMRI signals. Frontiers in Neuroscience 2008; 12: 398. doi: 10.3389/fnins.2018.00398
Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series. Physical Review Letters 2001; 88(17).
Wang B, Niu Y, Miao L, et al. Decreased complexity in Alzheimer’s disease: Resting-state fMRI evidence of Brain entropy mapping. Frontiers in Aging Neuroscience 2017; 9. doi: 10.3389/fnagi.2017.00378.
Sun J, Wang B, Niu Y, et al. Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and Alzheimer’s disease: A review. Entropy 2020; 22(2). doi: 10.3390/e22020239.
LaMontagne PJ, Benzinger TLS, Morris JC, et al. OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv 2019; 2–37. doi: 10.1101/2019.12.13.19014902
O’Bryant SE, Waring SC, Cullum CM, et al. Staging dementia using clinical dementia rating scale sum of boxes scores: A Texas Alzheimer’s research consortium study. Archives of Neurology 2008; 65(8): 1091–1095. doi: 10.1001/archneur.65.8.1091.
OASIS. OASIS-3: Imaging methods & data dictionary [Intrnet]. 2018. Available from: https://www.oasis-brains.org/files/OASIS-3_Imaging_Data_Dictionary_v1.8.pdf.
Whitfield-Gabrieli S, Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2012; 2(3): 125–141. doi: 10.10 89/brain.2012.0073.
Shirer WR, Ryali S, Rykhlevskaia E, et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex 2011; 22(10): 158–165. doi: 10.1093/cercor/bhr099.
Yan C, Wang X, Zuo X, et al. DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics 2016; 14(3): 339–351. doi: 10.1007/s12021-016-9299-4
Zuo X, Di Martinoa A, Kelly C, et al. The oscillating brain: complex and reliable. Neuroimage 2010; 49(2): 1432–1445. doi: 10.1016/j.neuroimage.2009.09.037
Riedl M, Müller A, Wessel N. Practical considerations of permutation entropy: A tutorial review. European Physical Journal: Special Topics 2013; 222(2): 249–262. doi: 10.1140/epjst/e2013-01862-7.
Glerean E, Pan RK, Salmi J, et al. Reorganization of functionally connected brain subnetworks in high-functioning autism. Human Brain Mapping 2015; 37: 1066–1079. doi: 10.1002/hbm.23084.
Hentschke H, Stüttgen MC. Computation of measures of effect size for neuroscience data sets. European Journal of Neuroscience 2011; 34(12): 1887–1894. doi: 10.1111/j.1460-9568.2011.07902.x.
Yokoi T, Watanabe H, Yamaguchi H, et al. Involvement of the precuneus/posterior cingulate cortex is significant for the development of Alzheimer’s disease: A PET (THK5351, PiB) and resting fMRI study. Frontiers in Aging Neuroscience 2018; 10. doi: 10.3389/fnagi.2018.00304.
Dillen KNH, Jacobs HIL, Kukolja J, et al. Aberrant functional connectivity differentiates rerosplenial cortex from posterior cingulate cortex in prodromal Alzheimer’s disease. Neurobiology of Aging 2016; 44: 114–126. doi: 10.1016/j.neurobiolaging.2016.04.010.
Koch W, Teipel S, Mueller S, et al. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiology of Aging 2012; 33(3): 466–478. doi: 10.1016/j.neurobiolaging.2 010.04.013.
Lee P, Chou K, Chung C, et al. Posterior cingulate cortex network predicts Alzheimer’s disease progression. Frontiers in Aging Neuroscience 2020; 12. 608667. doi: 10.3389/fnagi.2020.608667.
Li C, Li Y, Zheng L, et al. Abnormal brain network connectivity in a triple-network model of Alzheimer’s disease. Journal of Alzheimer’s Disease 2019; 69(1): 237–252. doi: 10.3233/JAD-181097.
Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nature Reviews Neuroscience 2018; 19(11): 687–700. doi: 10.1038/s41583-018-0067-3.
Zheng H, Onoda K, Nagai A, et al. Reduced dynamic complexity of BOLD signals differentiates mild cognitive impairment from normal aging. Frontiers in Aging Neuroscience 2020; 12: 90. doi: 10.3389/fnagi.2020.00090.
Grieder M, Wang DJJ, Dierks T, et al. Default mode network complexity and cognitive decline in mild Alzheimer’s disease. Frontiers in Neuroscience 2018; 12: 770. doi: 10.3389/fnins.2018.00770.
Boccardi V, Comanducci C, Baroni M, et al. Of energy and entropy: The ineluctable impact of aging in old age dementia. International Journal of Molecular Sciences 2017; 18(12): 2672. doi: 10.3390/ijms18122672.
Wang Z. Brain entropy mapping in healthy aging and Alzheimer’s disease. Frontiers in Aging Neuroscience 2020; 12: 372. doi: 10.3389/fnagi.2020.596122
Tagliazucchi E, Balenzuela P, Fraiman D, et al. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Frontiers in Physiology 2012; 3: 15. doi: 10.3389/fphys.2012.00015.
Haimovici A, Tagliazucchi E, Balenzuela P, et al. Brain organization into resting state networks emerges at criticality on a model of the human connectome. Physical Review Letters 2013; 110(17): 178101. doi: 10.1103/PhysRevLett.110.178101.
Song D, Chang D, Zhang J, et al. Associations of brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-frequency fluctuations in the resting brain. Brain Imaging and Behavior 2019; 13(5): 1486–1495. doi: 10.1007/s11682-018-9963-4.
Mera-Jiménez L, Ochoa-Gómez JF. Convolutional neural networks for the classification of independent rs-fMRI components. TecnoLógicas 2021; 24(50): 97–115.
Liégeois R, Li J, Kong R, et al. Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nature Communications 2019; 10(1): 1–9. doi: 10.1038/s41467-019-10317-7.