Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
Objective: The influence of climate on forest stands cannot be ignored, but most of the previous forest stand growth models were constructed under the presumption of invariant climate and could not estimate the stand growth under climate change. The model was constructed to provide a theoretical basis for forest operators to take reasonable management measures for fir under the influence of climate. Methods: Based on the survey data of 638 cedar plantation plots in Hunan Province, the optimal base model was selected from four biologically significant alternative stand basal area models, and the significant climate factors without serious covariance were selected by multiple stepwise regression analysis. The optimal form of random effects was determined, and then a model with climatic effects was constructed for the cross-sectional growth of fir plantations. Results: Richards formula is the optimal form of the basic model of stand basal area growth. The coefficient of adjustment was 0.8355; the average summer maximum temperature and the water vapor loss in Hargreaves climate affected the maximum and rate of fir stand stand growth respectively, and were negatively correlated with the stand growth. The adjusted coefficient of determination of the fir stand area break model with climate effects was 0.8921, the root mean square error (RMSE) was 3.0792, and the mean relative error absolute value (MARE) was 9.9011; compared with the optimal base model, improved by 6.77%, RMSE decreased by 19.04%, and MARE decreased by 15.95%. Conclusion: The construction of the stand cross-sectional area model with climate effects indicates that climate has a significant influence on stand growth, which supports the rationality of considering climate factors in the growth model, and it is important for the regional stand growth harvest and management of cedar while improving the accuracy and applicability of the model.
Knowledge of the state of fragmentation and transformation of a forested landscape is crucial for proper planning and biodiversity conservation. Chile is one of the world’s biodiversity hotspots; within it is the Nahuelbuta mountain range, which is considered an area of high biodiversity value and intense anthropic pressure. Despite this, there is no precise information on the degree of transformation of its landscape and its conservation status. The objective of this work was to evaluate the state of the landscape and the spatio-temporal changes of the native forests in this mountain range. Using Landsat images from 1986 and 2011, thematic maps of land use were generated. A 33% loss of native forest in 25 years was observed, mainly associated to the substitution by forest plantations. Changes in the spatial patterns of land cover and land use reveal a profound transformation of the landscape and advanced fragmentation of forests. We discuss how these patterns of change threaten the persistence of several endemic species at high risk of extinction. If these anthropogenic processes continue, these species could face an increased risk of extinction.
Quartz sand was used as bed material in a small fluidized bed reactor with 1 kg/h feed. Corn straw powder with particle size of 20–40 mesh, 40–60 mesh, 60–80 mesh and 80–120 mesh was used as raw material for rapid pyrolysis at reaction temperatures of 400 °C, 450 °C, 500 °C and 550 °C. The bio-oil obtained after liquefaction of pyrolysis gas was analyzed. The variation trend of bio-oil composition in pyrolysis of corn straw powder with different reaction temperatures and raw material sizes was compared. The results show that: (1) the content of 3-hydroxyl-2-phenyl-2-acrylic acid in bio-oil increases with the decrease of raw material particle size, but it is less at 450 °C; (2) with the increase of reaction temperature, the content of hydroxyacetaldehyde in bio-oil increases at first and then decreases: the content of hydroxyacetaldehyde in bio-oil is the highest at 500 °C when the particle size is 20–40 mesh, and the highest at 450 °C with the other three particle sizes. Compared with other particle sizes, raw material with the particle size of 60–80 mesh is not conducive to the formation of aldehyde compounds; (3) the reaction temperature of 500 °C and the particle size of 60–80 mesh of raw materials are more conducive to the formation of phenolic compounds in bio-oil; (4) the ester compounds with particle size of 20–40 mesh in bio-oil is 20% higher than that of other particle sizes; (5) the reaction temperature and the particle size of raw materials had no significant effect on the formation of ketones, alcohols and alkane compounds in bio-oils.
This paper analyzed the equitable allocation of infrastructure across regional states in Ethiopia. In general, in the past years, there has been a good start in the infrastructure sector in Ethiopia. However, the governance and equity system of infrastructure in Ethiopia is not flexible, not technology-oriented, not fair, and not easily solved. The results of in-depth interviews and focus group discussions (FGDs) showed that there is a lack of institutional capacity, infrastructure governance, and equity, which has negatively impacted the state- and nation-building processes in Ethiopia. According to the interviewees, so long as the unmet demand for infrastructure exists, it remains a key restrain on doing business in most Ethiopian regional states. This is due to the lack of integrated frameworks, as there are coordination failures (lack of proper government intervention, including a lack of proper understanding and implementation of the constitution and the federal system). In Ethiopia, to reduce these bottlenecks arising from the lack of institutional capacity, infrastructure governance, and equity and their effects on nation-building, first of all, the government has to critically hear the people, deeply assess the problems, and come to the point and then discuss the problems and the way forward with the society at large.
Copyright © by EnPress Publisher. All rights reserved.