This paper aims to investigate local communities’ participation in eco-tourism projects by using the community of Situ Cisanti located in Tarumajaya Village, West Java as a case. Data were gathered through observation, in-depth interviews, and documentation analysis. Observations and in-depth interviews were conducted simultaneously for two months, from September to October 2021. In-depth interviews were conducted with 15 informants from the elements; village government officials of Tarumajaya, Perhutani, and local communities who participated in the Situ Cisanti eco-tourism project, which was completed through a documents analysis. According to the findings, local community participation in Situ Cisanti eco-tourism consists of conservation and economic participation. Conservation participation is demonstrated by their participation in restoration and greening activities such as reforestation, etc. in Situ Cisanti and its surroundings, whereas economic participation is demonstrated by the establishment of stalls, culinary, coffee, souvenir, and homestay businesses as a result of Situ Cisanti eco-tourism. Furthermore, the existence of this eco-tourism has empowered women because new business opportunities that arise are not only run by men but also by women. As a result, this study implies that the participation of local eco-tourism communities not only has an impact on empowering conservation knowledge and economics, but it can also imply women empowerment.
Endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) is an off-patent insecticide used in agricultural farms. Its usage as a pesticide has become highly controversial over the last few decades. This is due to its reported hazardous nature to health and side effects like growth retardation, hydrocephalus, and undesired changes in the male and female hormones leading to complications in sexual maturity. Endosulfan is the main culprit among all pesticide poisoning incidents around the world. Though the usage of this dreaded pesticide is banned by most countries, the high stability of this molecule to withstand degradation for a long period poses a threat to mankind even today. So, it has become highly essential to detect the presence of this poisonous pesticide in the drinking water and milk around these places. It is also advisable to check the presence of this toxic material in the blood of the population living in and around these places so that an early and appropriate management strategy can be adopted. With this aim, we have developed a sensor for endosulfan that displayed high selectivity and sensitivity among all other common analytes in water and biological samples, with a wide linear concentration range (2 fM to 2 mM), a low detection limit (2 fM), and rapid response. A citrate-functionalized cadmium-selenium quantum dot was used for this purpose, which showed a concentration-dependent fluorescence enhancement, enabling easy and sensitive sensing. This sensor was utilized to detect endosulfan in different sources of water, human blood serum, and milk samples with good recoveries. It is also noted that the quantum dot forms a stable complex with endosulfan and is easy to separate from the contaminated source, paving the way for purifying the contaminated water. More detailed tests and validation of the sensor are needed to confirm these observations.
This study delves into the evolving landscape of smart city development in Kazakhstan, a domain gaining increasing relevance in the context of urban modernization and digital transformation. The research is anchored in the quest to understand how specific technological factors influence the formation of smart cities within the region. To this end, the study adopts a Spatial Autoregressive Model (SAR) as its core analytical tool, leveraging data on server density, cloud service usage, and electronic invoicing practices across various Kazakhstani cities. The crux of the research revolves around assessing the impact of these selected technological variables on the smart city development process. The SAR model’s application facilitates a nuanced understanding of the spatial dynamics at play, offering insights into how these factors vary in influence across different urban areas. A key finding of this investigation is the significant positive correlation between the adoption of electronic invoicing and smart city development, a result that stands in contrast to the relatively insignificant impact of server density and cloud service usage. The conclusion drawn from these findings underscores the pivotal role of digital administrative processes, particularly electronic invoicing, in driving the smart city agenda in Kazakhstan. This insight not only contributes to the academic discourse on smart cities but also holds practical implications for policymakers and urban planners. It suggests a strategic shift towards prioritizing digital administrative innovations over mere infrastructural or technological upgrades. The study’s outcomes are poised to guide future smart city initiatives in Kazakhstan and offer a reference point for similar emerging economies embarking on their smart city journeys.
The provided material presents a priority article on the scientific discovery titled “The phenomenon of simultaneous destruction of water-oil and oil-water emulsions”. The authors propose the corresponding formula: the previously unknown phenomenon of simultaneous destruction of water-oil and oil-water emulsions occurs when polynanostructured surfactant demulsifiers with characteristics akin to crystalline liquids, intramolecular interblock activity, and enduring intramolecular nanomotors (such as block copolymers of ethylene and propylene oxides, which act as sources of oligomer homologues of oxyethylene ethers) are added to crude oil during primary oil processing. This phenomenon is attributed to the redistribution of oligomer homologues, with the most hydrophobic oxyethylene ethers being dispersed in water-oil emulsions and the most hydrophilic ones in oil-water emulsions, resulting in robust nanodispersed phases with crystalline liquid properties.
Copyright © by EnPress Publisher. All rights reserved.