Guerrini L, Aliaga AE, Cárcamo J, et al. Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering. Analytica Chimica Acta 2008; 6
Paul V, Balasubramaniam E, Kazi M. The neurobehavioural toxicity of endosulfan in rats: A serotonergic involvement in learning impairment. European Journal of Pharmacology: Environmental Toxicology and Pharmacology 1994; 270(1): 1–7. doi: 10.1016/0926-691
Sinha N, Adhikari N, K. Saxena D. Effect of endosulfan during fetal gonadal differentiation on spermatogenesis in rats. Environmental Toxicology and Pharmacology 2001; 10(1–2): 29–32. doi: 10.1016/s1382-6689(01)00066-7
Saiyed H, Dewan A, Bhatnagar V, et al. Effect of endosulfan on male reproductive development. Environmental Health Perspectives 2003; 111(16): 1958–1962. doi: 10.1289/ehp.6271
Wilkes PS. Gas-liquid chromatographic-mass spectrometric confirmation of endosulfan and endosulfan sulfate in apples and carrots. Journal of AOAC International 1981; 64(5): 1208–1210. doi: 10.1093/jaoac/64.5.1208
Ishaq Z, Nawaz MA. Analysis of contaminated milk with organochlorine pesticide residues using gas chromatography. International Journal of Food Properties 2018; 21(1): 879–891. doi: 10.1080/10942912.2018.1460607
Siddique T, Zahir ZA, Frankenberger WT. Reversed‐phase liquid chromatographic method for analysis of endosulfan and its major metabolites. Journal of Liquid Chromatography & Related Technologies 2003; 26(7): 1069–1082. doi: 10.1081/jlc-120020094
Zhou X, Guan S, Li N, et al. Development of indirect competitive ELISA and colloidal gold immunochromatographic strip for endosulfan detection based on a monoclonal antibody. Foods 2023; 12(4): 736. doi: 10.3390/foods12040736
Shah M, Kolhe P, Gandhi S. Nano-assembly of multiwalled carbon nanotubes for sensitive voltammetric responses for the determination of residual levels of endosulfan. Chemosphere 2023; 321: 138148. doi: 10.1016/j.chemosphere.2023.138148
Division of Toxicology and Human Health Sciences. Public health statement for endosulfan. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp41-c1-b.pdf (accessed on 8 January 2024).
Nsibande SA, Forbes PBC. Fluorescence detection of pesticides using quantum dot materials—A review. Analytica Chimica Acta 2016; 945: 9–22. doi: 10.1016/j.aca.2016.10.002
Priyadarshini E, Pradhan N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sensors and Actuators B: Chemical 2017; 238: 888–902. doi: 10.1016/j.snb.2016.06.081
Saha K, Agasti SS, Kim C, et al. Gold nanoparticles in chemical and biological sensing. Chemical Reviews 2012; 112(5): 2739–2779. doi: 10.1021/cr2001178
Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews. 2006; 3
Nair RV, Nair LV, Govindachar DM, et al. Luminescent gold nanorods to enhance the near‐infrared emission of a photosensitizer for targeted cancer imaging and dual therapy: Experimental and theoretical approach. Chemistry—A European Journal 2020; 26(13): 2826–2836. doi: 10.1002/chem.201904952
Nair RV, Radhakrishna Pillai Suma P, Jayasree RS. A dual signal on-off fluorescent nanosensor for the simultaneous detection of copper and creatinine. Materials Science and Engineering: C 2020; 109: 110569. doi: 10.1016/j.msec.2019.110569
Nair LV, Philips DS, Jayasree RS, et al. A near‐infrared fluorescent nanosensor (AuC@Urease) for the selective detection of blood urea. Small 2013; 9(16): 2673–2677. doi: 10.1002/smll.201300213
Nair LakshmiV, Nagaoka Y, Maekawa T, et al. Quantum dot tailored to single wall carbon nanotubes: A multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy. Small 2014; 10(14): 2771–2775. doi: 10.1002/smll.201400418
Suma PRP, Nair RV, Paul W, et al. Vanadium pentoxide nanoplates: Synthesis, characterization and unveiling the intrinsic anti-bacterial activity. Materials Letters 2020; 269: 127673. doi: 10.1016/j.matlet.2020.127673
Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews 2003; 104(1): 293–346. doi: 10.1021/cr030698+
Jibin K, Prasad JS, Saranya G, et al. Optically controlled hybrid metamaterial of plasmonic spiky gold inbuilt graphene sheets for bimodal imaging guided multimodal therapy. Biomaterials Science 2020; 8(12): 3381–3391. doi: 10.1039/d0bm00312c
Nair RV, Santhakumar H, Jayasree RS. Gold nanorods decorated with a cancer drug for multimodal imaging and therapy. Faraday Discussions 2018; 207: 423–435. doi: 10.1039/c7fd00185a
Santhakumar H, Nair ResmiV, Philips DS, et al. Real time imaging and dynamics of hippocampal Zn2+ under epileptic condition using a ratiometric fluorescent probe. Scientific Reports 2018; 8(1). doi: 10.1038/s41598-018-27029-5
Nair LV, Nair RV, Shenoy SJ, et al. Blood brain barrier permeable gold nanocluster for targeted brain imaging and therapy: An in vitro and in vivo study. Journal of Materials Chemistry B 2017; 5(42): 8314–8321. doi: 10.1039/c7tb02247f
Nair LV, Nazeer SS, Jayasree RS, et al. Fluorescence imaging assisted photodynamic therapy using photosensitizer-linked gold quantum clusters. ACS Nano 2015; 9(6): 5825–5832. doi: 10.1021/acsnano.5b00406
Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385): 2016–2018. doi: 10.1126/science.281.5385.2016
Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta 2010; 673(1): 1–25. doi: 10.1016/j.aca.2010.05.026
Li M, Chen T, Gooding JJ, et al. Review of carbon and graphene quantum dots for sensing. ACS Sensors 2019; 4(7): 1732–1748. doi: 10.1021/acssensors.9b00514
Deepak TS, Shenoy RS, Manonmani HK. Development of fluorescence immunoassay based on cadmium sulphide (cds) quantum dots for the detection of endosulfan. International Journal of Current Advanced Research 2016; 5(4): 744–748.
Sreekumaran Nair A, Tom RT, Pradeep T. Detection and extraction of endosulfan by metal nanoparticles. Journal of Environmental Monitoring 2003; 5(2): 363–365. doi: 10.1039/b300107e
Bakhsh H, Buledi JA, Khand NH, et al. NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. Journal of Food Measurement and Characterization 2021; 15(3): 2695–2704. doi: 10.1007/s11694-021-00860-7
Goel P, Arora M. Fabrication of chemical sensor for organochlorine pesticide detection using colloidal gold nanoparticles. MRS Communications 2018; 8(3): 1000–1007. doi: 10.1557/mrc.2018.125
Masibi KK, Fayemi OE, Adekunle AS, et al. Electrochemical detection of endosulfan using an AONP-PANI-SWCNT modified glassy carbon electrode. Materials 2021; 14(4): 723. doi: 10.3390/ma14040723
Amiri GR, Fatahian S, Mahmoudi S. Preparation and optical properties assessment of CdSe quantum dots. Materials Sciences and Applications 2013; 04(02): 134–137. doi: 10.4236/msa.2013.42015
Wang Z, Xiao X, Zou T, et al. Citric acid capped CdS quantum dots for fluorescence detection of copper ions (II) in aqueous solution. Nanomaterials 2018; 9(1): 32. doi: 10.3390/nano9010032