India has experienced notable advancements in trade liberalization, innovation tactics, urbanization, financial expansion, and sophisticated economic development. Researchers are focusing more on how much energy consumption of both renewable and non-renewable accounts for overall system energy consumption in light of these dynamics. In order to gain an understanding of this important and contentious issue, we aim to examine the impact of trade openness, inventions, urbanization, financial expansion, economic development, and carbon emissions affected the usage of renewable and non-renewable energy (REU and N-REU) in India between 1980 and 2020. We apply the econometric approach involving unit root tests, FE-OLS, D-OLS, and FM-OLS, and a new Quantile Regression approach (QR). The empirical results demonstrate that trade openness, urbanization and CO2 emissions are statistically significant and negatively linked with renewable energy utilization. In contrast, technological innovations, financial development, and economic development in India have become a source of increase in renewable energy utilization. Technological innovations were considered negatively and statistically significant in connection with non-renewable energy utilization, whereas the trade, urbanization, financial growth, economic growth, and carbon emissions have been established that positively and statistically significant influence non-renewable energy utilization. The empirical results of this study offer some policy recommendations. For instance, as financial markets are the primary drivers of economic growth and the renewable energy sector in India, they should be supported in order to reduce CO2 emissions.
Assessment of water resources carrying capacity (WRCC) is of great significance for understanding the status of regional water resources, promoting the coordinated development of water resources with environmental, social and economic development, and promoting sustainable development. This study focuses on the Longdong Loess Plateau region and utilized panel data spanning from 2010 to 2020, established a three-dimensional evaluation index system encompassing water resources, economic, and ecological dimensions, uses the entropy-weighted TOPSIS model coupled with global spatial autocorrelation analysis (Global Moran’s I) and the hot spot analysis (Getis-Ord Gi* index) method to comprehensively evaluate the spatial distribution of the WRCC in the study region. It can provide scientific basis and theoretical support for decision-making on sustainable development strategies in the Longdong Loess Plateau region and other regions of the world.From 2010 to 2020, the overall WRCC of the Longdong Loess Plateau area show some fluctuations but maintained overall growth. The WRCC in each county and district predominantly fell within level III (normal) and level IV (good). The spatial distribution of the WRCC in each county and district is featured by clustering pattern, with neighboring counties displaying similar values, resulting in a spatial distribution pattern characterized by high carrying capacity in the south and low carrying capacity in the north. Based on these findings, our study puts forth several recommendations for enhancing the WRCC in the Longdong Loess Plateau area.
Underground station passenger flow is large, the number of parcels carried by passengers is large and varied, and the parcels carried have an impact on the fire hazard and evacuation of the station. In order to determine the weights of the passenger luggage risk and environmental factor index system in the fire risk evaluation of underground stations in a more realistic way, an optimized and improved hierarchical analysis method for determining the judgement matrix is proposed, which improves the traditional nine-scaled method and adopts the three-scaled method for the four major categories of luggage, namely, handbags, rucksacks, portable power tools and trolley cases. The advantage of this method is that there is no need for consistency judgement in determining packages with a wide range of types and uncertain contents, thus simplifying the calculation. Meanwhile, the reasonableness and reliability of the method is verified by combining it with an actual metro station fire risk assessment system.
Urbanization process affects global socio-economic development. Originally tied to modernization and industrialization, current urbanization policy is focused on productivity, economic activities, and environmental sustainability. This study examines impact of urbanization in various regions of Kazakhstan, focusing on environmental, social, labor, industrial, and economic indicators. The study aims to assess how different indicators influence urbanization trends in Kazakhstan, particularly regarding environmental emissions and pollution. It delves into regional development patterns and identifies key contributing factors. The research methodology is based on classical economic theories of urbanization and modern interpretations emphasizing sustainability and socio-economic impacts and includes two stages. Shannon entropy measures diversity and uncertainty in urbanization indicators, while cluster analysis identifies regional patterns. Data from 2010 to 2022 for 17 regions forms the basis of analysis. Regions are categorized into groups based on urbanization levels leaders, challenged, stable, and outliers. This classification reveals disparities in urban development and its impacts. Findings stress the importance of integrating environmental and social considerations into urban planning and policies. Targeted interventions based on regional characteristics and urbanization levels are recommended to enhance sustainability and socio-economic outcomes. Tailored urban policies accommodating specific regional needs are crucial. Effective management and policy-making demand a nuanced understanding of these impacts, emphasizing region-specific strategies over a uniform approach.
This study aims to: (1) analyze the need for digital marketing capabilities in Thai MSME; (2) develop an online digital marketing course; and (3) enhance Thai MSME’s digital marketing capabilities, particularly in Thailand’s manufacturing sectors. The survey was conducted using questionnaires distributed to a sample group of 400 digital marketing staff, executives, or business owners, complemented by in-depth interviews with marketing experts, business managers, and owners, totaling 10 participants. The research findings reveal a significant demand for digital marketing skills among MSME entrepreneurs in the manufacturing sector. The top three skills identified as most crucial for enhancement are: (1) communication and marketing information presentation skills; (2) brand building and public relations; and (3) video marketing execution. The study further revealed that the design of the digital marketing course, along with the developed online learning platform, attracted and successfully enrolled 104 MSMEs who participated in the online program. The pre- and post-training assessment results demonstrated a statistically significant difference in test scores, with a mean post-training score of 16.10 ( Mean = 16.10, S.D. = 1.396), representing a notable increase from the pre-training mean score of 6.47 ( Mean = 6.47, S.D. = 3.634) at the 0.05 significance level. Furthermore, the results of the follow-up evaluation on the application of acquired knowledge revealed that the overall level of knowledge and skills application is at its highest, with an average score of 4.64. This indicates that the developed course and online learning platform effectively enhance learners’ knowledge.
Copyright © by EnPress Publisher. All rights reserved.