In order to seek management alternatives for anthracnose caused by the fungus Colletotrichum gloeosporioides in blackberry (Rubus glaucus Benth.), at the Tibaitatá Research Center of the Colombian Agricultural Research Corporation AGROSAVIA (formerly CORPOICA), an experiment was conducted to evaluate the effect of the application of the major elements nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) on infections of the fungus C. gloeosporioides strain-52. For this purpose, a randomized complete block design was used with an arrangement of treatments in an orthogonal central composite design. To evaluate the relationship of fertilization levels and disease severity, an artificial inoculation was made on thorny blackberry stems using 0.5 cm mycelial discs at a concentration of 9.53 × 104 conidia. Observations consisted of: disease severity (S), incubation period (IP) and rate of development (r). Data analysis was done by the cluster method on the severity variable, a Pearson correlation analysis between variables, as well as a regression to estimate the effect of nutrients applied on the severity of C. gloeosporioides strain-52. The treatments were concentrated in four groups with the ranges (in parentheses) S (15.9% and 91.8%), PI (9 and 15.3) and Tr (0.0254 and 0.0468). A positive and significant correlation was observed between S and r (P < 0.001) and a negative correlation between PI with S and r (P < 0.001). By means of regression analysis, a linear model was generated that showed a reduction in disease severity with increasing N dose and an increase with the levels of P and Ca applied.
COVID-19 and the economic response have amplified and changed the nature of development challenges in fundamental ways. Global development cooperation should adapt accordingly. This paper lays out the urgency for new methods of development cooperation that can deliver resource transfers at scale, oriented to addressing climate change and with transparency and better governance. It looks at what is actually happening to major donor countries’ development cooperation programs and where the principal gaps lie, and offers some thoughts on how to move forward, notwithstanding the clear geopolitical rivalries that are evident.
The most immediate challenge is to provide a level of liquidity support to countries ravaged by the global economic downturn. Many developing countries will see double-digit declines in GDP, with some recording downturns not seen in peacetime. Alongside the short-term challenge of recovery, COVID-19 has laid bare longer-term trends that have pointed for some time to the lack of sustainability—environmental, social, and governance—in the way economic development was occurring in many places, including in advanced economies. This new landscape has significant implications for development cooperation in terms of scale, development/climate co-benefits, and transparency and accountability.
In this study, the development of rinnenkarren systems is analyzed. During the field studies, 36 rinnenkarren systems were investigated. The width and depth were measured at every 10 cm on the main channels and then shape was calculated to these places (the quotient of channel width and depth). Water flow was performed on artificial rinnenkarren system. A relation was looked for between the density of tributary channels and the average shape of the main channel, between the distance of tributary channels from each other and the shape of a given place of the main channel. The density and total length of the tributary channels on the lower and upper sections of the main channels being narrow at their lower end (11 pieces) and being wide at their lower end (10 pieces) of the rinnenkarren systems were calculated as well as their average proportional distance from the lower end of the main channel. The number of channel hollows was determined on the lower and upper sections of these main channels. It can be stated that the average shape of the main channel calculated to its total length depends on the density of the tributary channels and on the distance of tributary channels from each other. The main channel shape is smaller if less water flows on the floor for a long time because of the small density of the tributary channels and the great distance between the tributary channels. In this case, the channel deepens, but it does not widen. The width of the main channel depends on the number and location of the rivulets developing on channel-free relief. The main channel becomes narrow towards its lower end if the tributary rivulets are denser and longer on the upper part of the main rivulet developing on the channel-free, plain terrain and their distance is larger compared to the lower end. The channel hollows develop mainly at those places where the later developing tributary channels are hanging above the floor of the main channel. Thus, the former ones are younger than the latter ones. It can be stated that the morphology of the main channels (shape, channel hollows, and width changes of the main channel) is determined by the tributary channels (their number, location and age).
This paper reviews and compares the opportunities and challenges in terms of port and intermodal development in China and India—the two fast-growing economic giants in the world. The study analyzes the future direction of these two countries’ port-hinterland intermodal development from the sustainability perspective. Both China and India face some major opportunities and challenges in port-hinterland intermodal development. The proposal of the Silk Road Economic Belt and the 21st-century Maritime Silk Road, also known as the Belt and Road Initiative (BRI), offers plentiful opportunities for China. A challenge for China is that its development of dry ports is still in the infancy stage and thus it is unable to catch up with the pace of rapid economic growth. As compared with China, India focuses more on the social aspect to protect the welfare of its residents, which in turn jeopardizes India’s port-hinterland intermodal development in the economic sense. The biggest challenge for India is its social institution, which would take a long time to change. These in-depth comparative analyses not only give the future direction of port-hinterland intermodal development in China and India but also provide references for other countries with similar backgrounds.
Copyright © by EnPress Publisher. All rights reserved.