Ministerio de Agricultura y Desarrollo Rural (MADR). Anuario estadístico del sector agropecuario 2017 (Spanish) [Statistical yearbook of the agricultural sector 2017]. MADR; 2018.
Saldarriaga-Cardona A, Castaño-Zapata J, Arango-Isaza R. Caracterización del agente causante de antracnosis en tomate de árbol, manzano y mora (Spanish) [Characterization of the causal agent of anthracnose on tree tomato, apple and blackberry]. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales 2008; 32(123): 145–156.
Afanador L, Álvarez E, González A. Antracnosis de la mora de Castilla (Rubus glaucus Benth.): Variabilidad en especies y razas del agente causante e identificación de fuentes de resistencia a la enfermedad (Spanish) [Anthracnose of the Castile blackberry (Rubus glaucus Benth.): Variability in species and races of the causative agent and identification of sources of resistance to the disease]. In: Centro de Agricultura Tropical-CIAT. Proyecto Productores de lulo y mora competitivos mediante selección participativa de clones élite, manejo integrado del cultivo y fortalecimiento de cadenas de valor. Fontagro mora lulo. Palmira: Colombia; 2010. p. 66–84.
Afanador-Kafuri L, González A, Gañán L, et al. Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Disease 2014; 98(11): 1503–1513.
Rupp S, Weber RWS, Rieger D, et al. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Frontiers in Microbiology 2017; 7(2075): 1–12. doi: 10.3389/fmicb.2016.02075.
Gaviria-Hernández V, Patiño-Hoyos LF, Saldarriaga-Cardona A. In vitro evaluation of commercial fungicides for control of Colletotrichum spp., in blackberry. Ciencia y Tecnología Agropecuaria 2013; 14(1): 67–75.
López-Vásquez JM, Castaño-Zapata J, Marulanda-Ángel ML, et al. Characterization of Anthracnose resistance caused by Glomerella cingulata and productivity of five Andean blackberry genotypes (Rubus glaucus Benth.). Acta Agronómica 2013; 62(2): 174–185.
Huber D, Römheld V, Weinmann M. Relationship between nutrition, plant diseases and pests. In: Marschner P (editor). Marschner’s mineral nutrition of higher plants. Amsterdam: Elsevier; 2012. p. 283–298.
Chaboussou F. La trophobiose ou les rapports nutritinnels entre la Plante-hôte et ses parasites (Spanish) [Trophobiosis or nutritional inputs between the host plant and its parasites]. Annales de la Société Entomologique de France 1967; 3(3): 797–809.
Velasco V. Role of mineral nutrition on plant disease tolerance. Terra 2000; 17(3): 193–200.
McMahon P. Effect of nutrition and soil function on pathogens of tropical tree crops. In: Cumagun C (editor). Plant pathology. InTech; 2012. p. 243–272. doi: 10.5772/32490.
Huber D, Thompsom I. Nitrogen and plant disease. In: Datnoff L, Elmer W, Huber D (editors). Mineral nutrition and plant disease. St. Paul, Minnesota, USA: The American Phytopathological Society; 2007. p. 31–43.
Walters DR, Bingham IJ. Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control. Annals of Applied Biology 2007; 151(3): 307–324.
Tavernier V, Cadiou S, Pageau K, et al. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity. Journal of Experimental Botany 2007; 58(12): 3351–3360.
Prabhu A, Fageria N, Berni R. Phosohorus and plant disease. In: Datnoff L, Elmer W, Huber D (editors). Mineral nutrition and plant disease. St. Paul, Minnesota, USA: The American Phytopathological Society; 2007. p. 45–55.
Zhou L, He H, Liu R, et al. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biology 2014; 14(1): 1–11.
Spann T, Schumann A. Mineral nutrition contributes to plant disease and pest resistance [Internet]. The Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida; 2010. Available from: https://edis.ifas.ufl.edu/hs1181.
Saldarriaga A, Navas G, Navas A, et al. Proyecto Biología, caracterización y comportamiento del patógeno de antracnosis de la mora (Rubus glaucus Benth.), como base para establecer estrategias de manejo (Spanish) [Project Biology, characterization and behavior of the blackberry (Rubus glaucus Benth.) anthracnose pathogen, as a basis for establishing management strategies]. Rionegro: Colombian Agricultural Research Corporation-CORPOICA; 2012.
Castaño-Zapata J. Principios básicos de fitoepidemiología (Spanish) [Basic principles of jitoepidemiology]. Manizales: Centro Editorial, Universidad de Caldas; 2002.
Forero de la Rotta M. Diseases of blackberry. Bogotá: Colombian Agricultural Institute-ICA; 2001.
Nam MH, Jeong SK, Lee YS, et al. Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathology 2006; 55(2): 246–249.
van Bruggen AHC, Gamliel A, Finckh MR. Plant disease management in organic farming systems. Pest Management Science 2016; 72(1): 30–44. doi: 10.1002/ps.4145.
He K, Yang SY, Li H, et al. Effects of calcium carbonate on the survival of Ralstonia solanacearum in soil and control of tobacco bacterial wilt. European Journal of Plant Pathology 2014; 140(4): 665–675. doi: 10.1007∕s10658-014-0496-4.
Ahn IP, Kim S, Choi WB, et al. Calcium restores pre-penetration morphogenesis abolished by polyamines in Colletotrichum gloeosporioides infecting red pepper. FEMS Microbiology Letters 2003; 227(2): 237–241.
Araujo L, Bispo WMS, Rios VS, et al. Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Disease 2015; 99(4): 447–459. doi: 10.1094/PDIS-08-14-0788-RE.