The purpose of this study is to predict the frequency of mortality from urban traffic injuries for the most vulnerable road users before, during and after the confinement caused by COVID-19 in Santiago de Cali, Colombia. Descriptive statistical methods were applied to the frequency of traffic crash frequency to identify vulnerable road users. Spatial georeferencing was carried out to analyze the distribution of road crashes in the three moments, before, during, and after confinement, subsequently, the behavior of the most vulnerable road users at those three moments was predicted within the framework of the probabilistic random walk. The statistical results showed that the most vulnerable road user was the cyclist, followed by motorcyclist, motorcycle passenger, and pedestrian. Spatial georeferencing between the years 2019 and 2020 showed a change in the behavior of the crash density, while in 2021 a trend like the distribution of 2019 was observed. The predictions of the daily crash frequencies of these road users in the three moments were very close to the reported crash frequency. The predictions were strengthened by considering a descriptive analysis of a range of values that may indicate the possibility of underreporting in cases registered in the city’s official agency. These results provide new elements for policy makers to develop and implement preventive measures, allocate emergency resources, analyze the establishment of policies, plans and strategies aimed at the prevention and control of crashes due to traffic injuries in the face of extraordinary situations such as the COVID-19 pandemic or other similar events.
In the process of seeking sustainable development, enterprises have chosen international business strategy. The purpose of this study is to examine the relationship between the degree of internationalization of Chinese listed firms and financial reporting quality, as well as whether audit committees can moderate the impact of enterprise internationalization on financial reporting quality. The empirical analysis results of Chinese listed manufacturing firms from 2014 to 2018 show that: the degree of corporate internationalization has a significant U-shaped relationship with earnings management. This new finding solves the problem that scholars have inconsistent views on the internationalization of enterprises and the quality of financial reporting. The study also found that audit committees with experience working in accounting firms can inhibit firm earnings management behavior in the early stage of internationalization; audit committees with experience working overseas can inhibit firm earnings management behavior in the later stage of internationalization; the higher the remuneration of audit committee experts, the more it can inhibit firm earnings management behavior in the early stage of internationalization. In the later stage of internationalization, the higher the remuneration of audit committee experts, it helps the earnings management behavior of firms. This provides new evidence on the functioning of the audit committee’s role; however, the independence of the audit committee and the proportion of financial experts do not have a significant effect on the inhibition of earnings management.
There has always been a subtle connection between the development of science and technology and society's ethical beliefs. They mutually constrain and promote each other, collectively forming the fundamental framework of modern social ethics and moral systems. The exploration of the relationship between the two has significant theoretical value and practical significance. Thus, there is an urgent need for a new research paradigm to establish theoretical and practical guidance for the various issues arising between technology and ethics. This paper aims to analyze the binary structure of "human-nature" in the philosophy of life technology. Based on this research paradigm, it seeks to reveal the dialectical unity between technology and ethics. Furthermore, the paper explores how to construct a new ethical perspective of harmonious coexistence between humans and nature in the present era. It also delves into the methods to confront this ethical dilemma.
Cobalt-ion batteries are considered a promising battery chemistry for renewable energy storage. However, there are indeed challenges associated with co-ion batteries that demonstrate undesirable side reactions due to hydrogen gas production. This study demonstrates the use of a nanocomposite electrolyte that provides stable performance cycling and high Co2+ conductivity (approximately 24 mS cm−1). The desirable properties of the nanocomposite material can be attributed to its mechanical strength, which remains at nearly 68 MPa, and its ability to form bonds with H2O. These findings offer potential solutions to address the challenges of co-dendrite, contributing to the advancement of co-ion batteries as a promising battery chemistry. The exceptional cycling stability of the co-metal anode, even at ultra-high rates, is a significant achievement demonstrated in the study using the nanocomposite electrolyte. The co-metal anode has a 3500-cycle current density of 80 mA cm−2, which indicates excellent stability and durability. Moreover, the cumulative capacity of 15.6 Ah cm−2 at a current density of 40 mA cm−2 highlights the better energy storage capability. This performance is particularly noteworthy for energy storage applications where high capacity and long cycle life are crucial. The H2O bonding capacity of the component in the nanocomposite electrolyte plays a vital role in reducing surface passivation and hydrogen evolution reactions. By forming strong bonds with H2O molecules, the polyethyne helps prevent unwanted reactions that can deteriorate battery performance and efficiency. This mitigates issues typically associated with excess H2O and ion presence in aqueous Co-ion batteries. Furthermore, the high-rate performance with excellent stability and cycling stability performance (>500 cycles at 8 C) of full Co||MnO2 batteries fabricated with this electrolyte further validates its effectiveness in practical battery configurations. These results indicate the potential of the nanocomposite electrolyte as a valuable and sustainable option, simplifying the development of reliable and efficient energy storage systems and renewable energy applications.
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
Border cities face significant challenges due to political, environmental, and social issues. Strong urban governance can help resolve many of these problems, but it requires identifying practical factors specific to each city’s location. This study aimed to assess the state of urban governance in Paveh, a border city with a population of 25,771 people. The research used both primary data collection (through a questionnaire) and secondary data sources (local and national databases and documents). The study randomly selected 379 households from Paveh’s population and determined a reliability value of 0.913 using the Cochrane procedure. To assess Paveh’s urban governance, eight criteria were used: participatory, rule-of-law compliance, transparency, responsiveness, consensus-oriented, equitable and inclusive, effective and efficient, and accountability. The findings revealed that Paveh’s urban governance, particularly in the dimensions of transparency and participation, is in an unfavorable situation.
Copyright © by EnPress Publisher. All rights reserved.