Background: Multiple sclerosis is often a longitudinal disease continuum with an initial relapsing-remitting phase (RRMS) and later secondary progression (SPMS). Most currently approved therapies are not sufficiently effective in SPMS. Early detection of SPMS conversion is therefore critical for therapy selection. Important decision-making tools may include testing of partial cognitive performance and magnetic resonance imaging (MRI). Aim of the work: To demonstrate the importance of cognitive testing and MRI for the prediction and detection of SPMS conversion. Elaboration of strategies for follow-up and therapy management in practice, especially in outpatient care. Material and methods: Review based on an unsystematic literature search. Results: Standardized cognitive testing can be helpful for early SPMS diagnosis and facilitate progression assessment. Annual use of sensitive screening tests such as Symbol Digit Modalities Test (SDMT) and Brief Visual Memory Test-Revised (BVMT-R) or the Brief International Cognitive Assessment for MS (BICAMS) test battery is recommended. Persistent inflammatory activity on MRI in the first three years of disease and the presence of cortical lesions are predictive of SPMS conversion. Standardized MRI monitoring for features of progressive MS can support clinically and neurocognitively based suspicion of SPMS. Discussion: Interdisciplinary care of MS patients by clinically skilled neurologists, supported by neuropsychological testing and MRI, has a high value for SPMS prediction and diagnosis. The latter allows early conversion to appropriate therapies, as SPMS requires different interventions than RRMS. After drug switching, clinical, neuropsychological, and imaging vigilance allows stringent monitoring for neuroinflammatory and degenerative activity as well as treatment complications.
The ways of developing functional textiles based on nanomaterials were introduced, and the latest research achievements of nanomaterials in such aspects as flame retardancy, antibacterial, super-hydrophobic, self-cleaning, UV resistance, and anti-static textiles were reviewed. The main technical obstacles to the large-scale application of nanomaterials in functional textiles were pointed out, the possible solutions were discussed, and the development of functional textiles by nanomaterials has been prospected.
This study examines the determinants of stunting prevention among toddlers in fishing families residing in the coastal areas of Bengkulu City. Utilizing a mixed-method approach, the research combined survey data from 70 respondents and in-depth interviews with 11 informants. Findings indicate that health behavior and genetic factors from health status, alongside education level and occupation from socioeconomic status, play pivotal roles in stunting prevention. Consumption patterns, particularly the consistent provision of animal protein and vegetables in daily meals, significantly contribute to the absence of stunting cases in the studied population. However, limited fruit intake persists due to economic barriers. The study underscores the necessity of integrated strategies, including nutrition education, enhanced access to nutritious foods, and economic support for fishing families, to sustain stunting prevention in coastal communities.
Modernizing the Internet of Things in Islamic boarding schools is essential to eliminate backwardness and skills gaps. Santri must have cognitive, affective, psychomotor, and creative intelligence to be ready to enter the industrial and business world. The students’ need for information transparency can be resolved using technology. This is because the empowerment of the Internet of Things has become a separate part of Islamic boarding school activities with students who can connect in real-time. This research aims to analyze current conditions and stakeholder involvement regarding the application of the Internet of Things in innovative Islamic boarding school services in the era of disruption. The Descriptive Method and Individual Interest Matrix Analysis were used by involving 130 respondents from the internal environment of the Daarul Rahman Islamic boarding school and completing the questionnaire through FGD (Focus Group Discussion) with the leaders of the Daarul Rahman Islamic boarding school. The results show that the current condition of Islamic boarding schools is that most need to learn or understand IoT, even though they are enthusiastic about learning new things and flexible in accepting change. The challenges required in implementing IoT are financial investment, increasing human resources through training, and synergy between Islamic boarding school policy makers. Mutually supportive and solid conditions are required between foundations, school principals, and school committees to implement IoT at Daarul Rahman Islamic Boarding School. Collaboration with various parties is needed because the implementation of IoT cannot be done alone by Islamic boarding schools but with the support of various related parties.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
Copyright © by EnPress Publisher. All rights reserved.