The use of plant viruses as bioherbicides represents a fascinating and promising frontier in modern agriculture and weed management. This review article delves into the multifaceted world of harnessing plant viruses for herbicidal purposes, shedding light on their potential as eco-friendly, sustainable alternatives to traditional chemical herbicides. We begin by exploring the diverse mechanisms through which plant viruses can target and control weeds, from altering gene expression to disrupting essential physiological processes. The article highlights the advantages of utilizing plant viruses, such as their specificity for weed species, minimal impact on non-target plants, and a reduced environmental footprint. Furthermore, we investigate the remarkable versatility of plant viruses, showcasing their adaptability to various weed species and agricultural environments. The review delves into the latest advancements in genetic modification techniques, which enable the engineering of plant viruses for enhanced herbicidal properties and safety. In addition to their efficacy, we discuss the economic and ecological advantages of using plant viruses as bioherbicides, emphasizing their potential to reduce chemical herbicide usage and decrease the development of herbicide-resistant weeds. We also address the regulatory and safety considerations associated with the application of plant viruses in agriculture. Ultimately, this review article underscores the immense potential of plant viruses as bioherbicides and calls for further research, development, and responsible deployment to harness these microscopic agents in the ongoing quest for sustainable and environmentally friendly weed management strategies.
Bael or Aegle marmelos Corrêa is considered a sacred tree by Hindus and is offered to Lord Shiva while worshipping. It grows in the Indian subcontinent and Southeast Asia and is called by various names in different regions. Bael has been used as a traditional medicine in India and other Southeast Asian countries to treat various ailments, including diarrhea, chronic dysentery, constipation, gonorrhea, catarrh, diabetes, deafness, inflammations, ulcerated intestinal mucosa, intermittent fever, melancholia, heart palpitation, and also to control fertility. The ethnomedicinal properties of Bael are owing to its ability to synthesize alkaloids, cardiac glycosides, anthocyanins, flavonoids, steroids, saponins, terpenoids, tannins, lignins, quinones, coumarins, proteins, carbohydrates, amino acids, reducing sugars, fats, and oils. The aegeline, auroptene, umbelliferone, psoralene, marmin, imperatorin, xylorhamnoarabinogalactan I pectic polysaccharide and skimmianine are synthesized by different parts of Bael, and they have shown antibacterial, anti-inflammatory, analgesic, anti-allergic, anthelmintic, antidiabetic, anticancer, cardioprotective and neuroprotective activities in various experimental models. The present review has been written consulting various publications, and different websites including Google Scholar, Pubmed, ScienceDirect, and Google.
The development of entrepreneurship in fisheries operations is an important component of eliminating poverty. Fisherman obviously produce fishery goods, despite the broad recognition of the positive role that entrepreneurship can play in the reduction of poverty. Integration into one’s society and economy are increasingly beginning to be seen as an essential component of entrepreneurial success. This study aims to investigate the cultural and entrepreneurial attitudes of fishermen involved in the production of fishery products in the Province of West Sumatra, Indonesia, accordingly with a particular focus on marine resource conservation areas in village development. In this development, the descriptive design of capitals was utilized. This design included interviews, a questionnaire survey, and a review of the relevant body of literature. As a result, the purpose of the study was to propose an alternative model for the development of villages that would be considered novel in Indonesia. The findings demonstrated that the model makes a contribution to enhancing the socio-economic, cultural, and social capabilities of a group of fishermen. In conclusion, tourism that is focused on social entrepreneurship has the potential to boost entrepreneurial attitudes as well as the atmosphere surrounding community understanding of creative village development. We came to the conclusion that implementing tourism with a focus on social entrepreneurship could increase entrepreneurial attitudes and create an atmosphere that is more conscious of the needs of the community in village development.
Communicative language is an important part of daily communication, and mastering its usage proficiently can leave a good impression on people. There are significant differences in the greetings between China and Japan. These differences also reflect the different cultures of the two countries. Focusing on the greetings of the first meeting in daily life, this paper selects TV plays with more daily exchanges, collects language materials of TV play types related to social life, friendship, schools, companies, etc., and makes a comparative analysis of the performance and functions of Japanese and Chinese greetings, and makes a study of Sociolinguistics.
Modelling and simulation have now become standard methods that serve to cut the economic costs of R&D for novel advanced systems. This paper introduces the study of modelling and simulation of the infrared thermography process to detect defects in the hydroelectric penstock. A 3-D penstock model was built in ANSYS version 19.2.0. Flat bottom holes of different sizes and depths were created on the inner surface of the model as an optimal scenario to represent the subsurface defect in the penstock. The FEM was applied to mimic the heat transfer in the proposed model. The model’s outer surface was excited at multiple excitation frequencies by a sinusoidal heat flux, and the thermal response of the model was presented in the form of thermal images to show the temperature contrast due to the presence of defects. The harmonic approximation method was applied to calculate the phase angle, and its relationship with respect to defect depth and defect size was also studied. The results confirmed that the FEM model has led to a better understanding of lock-in infrared thermography and can be used to detect subsurface defects in the hydroelectric penstock.
Copyright © by EnPress Publisher. All rights reserved.