This research aims to analyze the relationship between dynamic capabilities and organizational performance, networking, and organizational performance, and to analyze the relationship between spiritual motivation variables and organizational performance. This research method is a quantitative survey. The respondent sampling technique used in this research is a purposive sampling technique, namely samples taken based on certain considerations. Responses to this study came from 567 Organization members of education. The data collection method used in this research is an online questionnaire which provides a written list of questions to respondents. The questionnaire was designed using a Likert scale of 1 to 7. In this study, the data was analyzed using the Partial Least Square (PLS) method with SmartPLS version 3.0 software. The stages of research data analysis are outer model testing, namely integrated validity and reliability testing, inner model testing, and hypothesis testing. The independent variables of this research are dynamic capabilities, collaborative networks, and spiritual motivation and the dependent variable is Organization performance. The results of this research are that dynamic capabilities have a significant and positive influence on organization performance, collaboration networks have a significant and positive influence on organization performance, and motivation has a significant and positive influence on organization performance. The managerial implication of the results of this research is that to improve the performance of educational organizations, managers can apply dynamic capability variables because dynamic variables have been proven to significantly encourage increased organizational performance. Organizations could improve the performance of educational organizations, and managers bu implement collaboration network variables because collaboration networks have been proven significantly can significantly encourage the increased performance of educational organizations. To improve the performance of educational organizations, managers can apply motivation variables because motivation variables have been proven to significantly encourage increased performance of educational organizations.
One crucial metric for estimating a reservoirs and dam’s lifespan is sedimentation. It is dependent upon sediment output, which in turn is dependent upon soil erosion. The study area, the Aguat Wuha Dam, was located in Simada woreda, of northwestern parts of Ethiopia. And the study's goal was to use Arc GIS and RUSLE adjusted to Ethiopian conditions to assess potential soil erosion and sediment output from the watershed and identify hotspot locations for appropriate planning for erosion and sedimentation problem management techniques to make the outputs of the dam project more productive and effective for the proposed and suggested purpose of the dam. To predict the geographical patterns of soil erosion in the watershed, the Geographic Information System (GIS) was combined with the revised universal soil loss equation (RUSLE). A soil erosion map was produced using ArcGIS by utilizing all of the model's parameters, including Erosivity, erodibility, steepness, land use, land cover, and supportive practice factors. The watershed's yearly soil loss varies from 0 to 413.86 tons/ha. In order to determine the erosion hotspot area, the average annual soil loss value was discovered to be 9.24 tons/ha/year and was categorized into six erosion severity classes: low, moderate, high, very high, severe, and very severe. These findings indicated that 162.57 ha and 699.17 ha of the watershed were considered to be extremely and severely vulnerable to soil erosion, respectively. It was discovered that the anticipated sediment yield supplied to the outlet varied from 0 to 104.94 tons/ha/year. By standing from the implications of the assessments of the geological, geotechnical, topographical, and socioenvironmental considerations Watershed management is the most effective way to reduce the amount of sediment produced and the amount that enters the reservoir among the several reservoir sedimentation control options that are available.
This research underscores the importance of enhancing the early detection of diabetic retinopathy and glaucoma, two prominent culprits behind vision loss. Typically, retinal diseases lurk without symptoms until they inflict severe vision impairment, underscoring the critical need for early identification. The research is centered on the potential of leveraging fundus images, which offer invaluable insights by analyzing various attributes of retinal blood vessels, such as their length, width, tortuosity, and branching patterns. The conventional practice of manually segmenting retinal vessels by medical professionals is both intricate and time-consuming, demanding specialized expertise. This approach, reliant on pathologists, grapples with limitations related to scalability and accessibility. To surmount these challenges, the research introduces an automated solution employing computer vision. It conducts an evaluation of diverse retinal vessel segmentation and classification methods, including machine learning, filtering-based, and model-based techniques. Robust performance assessments, involving metrics like the true positive rate, true negative rate, and accuracy, facilitate a comprehensive comparison of these methodologies. The ultimate goal of this research is to create more efficient and accessible diagnostic tools, consequently enhancing the early detection of eye diseases through automated retinal vessel segmentation and classification. This endeavor combines the capabilities of computer vision and deep learning to pioneer new benchmarks in the realm of biomedical imaging, thereby addressing the pressing issues surrounding eye disease diagnosis.
Retinal disorders, such as diabetic retinopathy, glaucoma, macular edema, and vein occlusions, are significant contributors to global vision impairment. These conditions frequently remain symptomless until patients suffer severe vision deterioration, underscoring the critical importance of early diagnosis. Fundus images serve as a valuable resource for identifying the initial indicators of these ailments, particularly by examining various characteristics of retinal blood vessels, such as their length, width, tortuosity, and branching patterns. Traditionally, healthcare practitioners often rely on manual retinal vessel segmentation, a process that is both time-consuming and intricate, demanding specialized expertise. However, this approach poses a notable challenge since its precision and consistency heavily rely on the availability of highly skilled professionals. To surmount these challenges, there is an urgent demand for an automatic and efficient method for retinal vessel segmentation and classification employing computer vision techniques, which form the foundation of biomedical imaging. Numerous researchers have put forth techniques for blood vessel segmentation, broadly categorized into machine learning, filtering-based, and model-based methods. Machine learning methods categorize pixels as either vessels or non-vessels, employing classifiers trained on hand-annotated images. Subsequently, these techniques extract features using 7D feature vectors and apply neural network classification. Additional post-processing steps are used to bridge gaps and eliminate isolated pixels. On the other hand, filtering-based approaches employ morphological operators within morphological image processing, capitalizing on predefined shapes to filter out objects from the background. However, this technique often treats larger blood vessels as cohesive structures. Model-based methods leverage vessel models to identify retinal blood vessels, but they are sensitive to parameter selection, necessitating careful choices to simultaneously detect thin and large vessels effectively. Our proposed research endeavors to conduct a thorough and empirical evaluation of the effectiveness of automated segmentation and classification techniques for identifying eye-related diseases, particularly diabetic retinopathy and glaucoma. This evaluation will involve various retinal image datasets, including DRIVE, REVIEW, STARE, HRF, and DRION. The methodologies under consideration encompass machine learning, filtering-based, and model-based approaches, with performance assessment based on a range of metrics, including true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), negative predictive value (NPV), false discovery rate (FDR), Matthews's correlation coefficient (MCC), and accuracy (ACC). The primary objective of this research is to scrutinize, assess, and compare the design and performance of different segmentation and classification techniques, encompassing both supervised and unsupervised learning methods. To attain this objective, we will refine existing techniques and develop new ones, ensuring a more streamlined and computationally efficient approach.
UAVs, also known as unmanned aerial vehicles, have emerged as an efficient and flexible system for offering a rapid and cost-effective solution. In recent years, large-scale mapping using UAV photogrammetry has gained significant popularity and has been widely adopted in academia as well as the private sector. This study aims to investigate the technical aspects of this field, provide insights into the procedural steps involved, and present a case study conducted in Cesme, Izmir. The findings derived from the case study are thoroughly discussed, and the potential applications of UAV photogrammetry in large-scale mapping are examined. The study area is divided into 12 blocks. The flight plans and the distribution of ground control point (GCP) locations were determined based on these blocks. As a result of the data processing procedure, average GCP positional errors ranging from 1 to 18 cm have been obtained for the blocks.
We reviewed the research on super-hydrophobic materials. Firstly, we introduced the basic principles of super-hydrophobic materials, including the Young equation, Wenzel model, and Cassie model. Then, we summarized the main preparation methods and research results of super-hydrophobic materials, such as the template method, soft etching method, electrospinning method, and sol-gel method. Among them, the electrospinning method that has developed in recent years is a new technology for preparing micro/nanofibers. Finally, the applications of super-hydrophobic materials in the field of coatings, fabric and filter material, anti-fogging, and antibacterial were introduced, and the problems existing in the preparation of super-hydrophobic materials were pointed out, such as unavailable industrialized production, high cost, and poor durability of the materials. Therefore, it is necessary to make a further study on the application of the materials in the selection, preparation, and post-treatment.
Copyright © by EnPress Publisher. All rights reserved.