Every sector must possess the ability to identify potential dangers, assess associated risks, and mitigate them to a controllable extent. The mining industry inherently faces significant hazards due to the intricate nature of its systems, processes, and procedures. Effective risk control management and hazard assessment are essential to identify potential adverse events that might lead to hazards, analyze the processes by which these occurrences may transpire, and estimate the extent, importance, and likelihood of negative consequences. (1) The stage of industrial hazard analysis assesses the capability of a risk assessment process by acknowledging that hidden hazards have the potential to generate dangers that are both unknown and beyond control. (2) To mitigate hazards in mines, it is imperative to identify and assess all potentially dangerous circumstances. (3) Upon conducting an analysis and evaluation of the safety risks associated with identified hazards, the acquired knowledge has the potential to assist mine management in making more informed and effective decisions. (4) Frequently employed methods of data collection include interrogation of victims/witnesses and collection of information directly from the accident site. (5) After conducting a thorough analysis and evaluation of the safety hazards associated with hazard identification, the dataset has the potential to assist mine management in making more informed decisions. The study highlights the critical role of management in promoting a strong safety culture and the need for active participation in health and safety systems. By addressing both feared and unknown risks, educating workers, and utilizing safety-related data more effectively, mining companies can significantly improve their risk management strategies and ensure a safer working environment.
Malaria is an infectious disease that poses a significant global health threat, particularly to children and pregnant women. Specifically, in 2020, Rampah Village, Kutambaru sub-district, Langkat Regency, North Sumatra Province, Indonesia, reported 22 malaria cases, accounting for 84% of the local cases. This study aims to develop a malaria prevention model by leveraging community capital in Rampah Village. A mixed-method sequential explanatory approach, combining quantitative and qualitative methods, was employed. Quantitative data were collected through questionnaires from a sample of 200 respondents and analyzed using structural equation modeling (SEM) with Smart PLS (Partial Least Squares) software. The qualitative component utilized a phenomenological design, gathering data through interviews. Quantitative findings indicate that natural capital significantly influences malaria prevention principles. There is also a positive and significant relationship between developmental capital and malaria prevention. Cultural capital shows a positive correlation with malaria prevention, as does social capital. The qualitative phase identified cultural capital within the Karo tribe, such as ‘Rakut si Telu,’ which signifies familial bonds fostering mutual aid and respect. The results of this study are crucial for formulating policies and redesigning community-capital-based malaria prevention programs. These programs can be effectively implemented through cross-sectoral collaboration among health departments, local government, and community members. Malaria is a communicable disease threatening global health, particularly affecting children and pregnant women. In 2020, there were 229 million cases of Malaria worldwide, resulting in 409,000 deaths. In Indonesia, specifically in North Sumatra’s Langkat Regency, Kutambaru District, Rampah Village had 22 cases (84%). The purpose of this research is to formulate a Malaria prevention model using community resources in Rampah Village, Kutambaru District, Langkat Regency. The study employed a mixed-methods sequential explanatory approach, combining quantitative and qualitative methods. Quantitative data was collected through questionnaires, with 200 respondents, and structural equation modeling (SEM) analysis using smart PLS (Partial Least Squares) software. Qualitative data was gathered through interviews. The research findings showed a positive relationship between cultural modalities and Malaria prevention (p = 0.000) with a path coefficient T-value of 12.500. The cultural modality and Malaria prevention relationship were significantly positive (p = 0.000) with a path coefficient T-value of 3.603. A positive and significant correlation also exists between development modalities and Malaria prevention (p = 0.011) with a path coefficient T-value of 2.555. Qualitative research revealed the Rakut si Telu cultural modality of the Karo tribe, meaning that family-based social connections create a sense of helping and respecting one another. The Orat si Waluh cultural modality represents daily life practices in the Karo tribe as a form of community-based Malaria prevention.
Empirical evidence suggests that generational cohorts display behavioral differences due to rapid advancements in science and technology and enhanced living standards. However, systematic studies examining the behaviours of different generations and their impact on creativity and its various antecedents are scant. This study was undertaken to bridge this gap in the literature by focusing on how generational differences could impact a few behavioural antecedents and employee creativity. The antecedent behaviours examined include self-efficacy, organizational commitment, employee empowerment, and work engagement. Data for the study was collected online using structured, standardized questionnaires. Data were collected from 432 samples and analyzed using Smart-PLS. The results show that most of the proposed antecedents impacted creativity. However, generational differences did not moderate the relationship between the antecedents and creativity. The study will interest scholars and social scientists, as it is the first to be conducted in Saudi Arabia. The study also discusses the implications and limitations. It is expected that the findings of this study will trigger more studies.
This article uses a qualitative descriptive approach, through field visits with observations and in-depth interviews. The research location chosen was a representative village in accordance with the Tourism Village classification of the Gunung Kidul Regency Tourism Office. A tourist village is a form of integration between attractions, accommodation and supporting facilities presented in a structure of community life that is integrated with applicable procedures and traditions. In line with this, the existence of tourist villages can be an alternative strategy for increasing village original income (PADes) to support poverty alleviation. Measuring the impact of tourism village innovation on increasing Village Original Income (PADes) in supporting poverty reduction can provide a complete picture of how the implementation of tourism village innovation has a significant impact on village development through increasing PADes. Gunung Kidul Regency is one of the areas that has succeeded in developing tourist villages, this can be seen from the reduction in poverty rates in the last 10 years.
Vehicle detection stands out as a rapidly developing technology today and is further strengthened by deep learning algorithms. This technology is critical in traffic management, automated driving systems, security, urban planning, environmental impacts, transportation, and emergency response applications. Vehicle detection, which is used in many application areas such as monitoring traffic flow, assessing density, increasing security, and vehicle detection in automatic driving systems, makes an effective contribution to a wide range of areas, from urban planning to security measures. Moreover, the integration of this technology represents an important step for the development of smart cities and sustainable urban life. Deep learning models, especially algorithms such as You Only Look Once version 5 (YOLOv5) and You Only Look Once version 8 (YOLOv8), show effective vehicle detection results with satellite image data. According to the comparisons, the precision and recall values of the YOLOv5 model are 1.63% and 2.49% higher, respectively, than the YOLOv8 model. The reason for this difference is that the YOLOv8 model makes more sensitive vehicle detection than the YOLOv5. In the comparison based on the F1 score, the F1 score of YOLOv5 was measured as 0.958, while the F1 score of YOLOv8 was measured as 0.938. Ignoring sensitivity amounts, the increase in F1 score of YOLOv8 compared to YOLOv5 was found to be 0.06%.
Copyright © by EnPress Publisher. All rights reserved.