Maity S, Bhattacharyya A, Singh PK, et al. Last Decade in Vehicle Detection and Classification: A Comprehensive Survey. Archives of Computational Methods in Engineering. 2022; 29(7): 5259-5296. doi: 10.1007/s11831-022-09764-1
Bautista CM, Dy CA, Manalac MI, et al. Convolutional neural network for vehicle detection in low resolution traffic videos. In: Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP).
Tsai YM, Huang KY, Tsai CC, et al. Learning-Based Vehicle Detection Using Up-Scaling Schemes and Predictive Frame Pipeline Structures. In: Proceedings of the 2010 20th International Conference on Pattern Recognition.
Javed AR, Shahzad F, Rehman S ur, et al. Future smart cities: requirements, emerging technologies, applications, challenges, and future aspects. Cities. 2022; 129: 103794. doi: 10.1016/j.cities.2022.103794
Badach J, Voordeckers D, Nyka L, et al. A framework for Air Quality Management Zones - Useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk. Building and Environment. 2020; 174: 106743. doi: 10.1016/j.buildenv.2020.106743
Kashyap AA, Raviraj S, Devarakonda A, et al. Traffic flow prediction models – A review of deep learning techniques. Cogent Engineering. 2021; 9(1). doi: 10.1080/23311916.2021.2010510
Ammar A, Koubaa A, Ahmed M, et al. Aerial images processing for car detection using convolutional neural networks: Comparison between faster r-cnn and yolov3. arXiv. 2019; arXiv:1910.07234.
ölkesen IC, Yomralıo˘glu T. Use of worldview-2 satellite imagery and ancillary data for mapping land cover and use (Turkish). Harita Dergisi. 2014; 152(2): 12-24.
Liao L, Xiao J, Yang Y, et al. High temporal frequency vehicle counting from low-resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing. 2023; 198: 45-59. doi: 10.1016/j.isprsjprs.2023.02.006
Komissarov V. AI applications for satellite imagery and satellite data. Available online: https://emerj.com/ai-sector-overviews/ai-applications-for-satellite-imagery-and-data/ (accessed on 23 May 2023).
Association AH. Social determinants of health series: Transportation and the role of hospitals. Available online: https://www.aha.org/ahahret-guides/2017-11-15-social-determinants-health-series-transportation-and-role-hospitals (accessed on 23 May 2023).
Vivian EO. Car park suitability mapping in federal polytechnic Oko, Anambra state, using geospatial techniques. Intemational Journal of Innovative Science and Research Technology. 2023; 8(2).
Gong H, Mu T, Li Q, et al. Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sensing. 2022; 14(12): 2861. doi: 10.3390/rs14122861
Patel R, Meduri P. Car Detection Based Algorithm for Automatic Parking Space Detection. In: Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA).
Putra M, Yussof Z, Lim K, Salim S. Convolutional neural network for person and car detection using yolo framework, Journal of Telecommunication, Electronic and Computer Engineering. 2018; 10(1-7): 67-71.
Arruda VF, Paixao TM, Berriel RF, et al. Cross-Domain Car Detection Using Unsupervised Image-to-Image Translation: From Day to Night. In: Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN). Published online July 2019. doi: 10.1109/ijcnn.2019.8852008
Wang L, Geng X, Ma X, et al. Ridesharing car detection by transfer learning. Artificial Intelligence. 2019; 273: 1-18. doi: 10.1016/j.artint.2018.12.008
Kashyap K, Miri R. An Optimal BDCNN ML Architecture for Car Make Model Prediction. Journal of Artificial Intelligence and Technology. 2023. doi: 10.37965/jait.2023.0268
Xu H, Lai S, Li X, et al. Cross-domain car detection model with integrated convolutional block attention mechanism. Image and Vision Computing. 2023; 140: 104834. doi: 10.1016/j.imavis.2023.104834
Citra DH, Jazman M, Afdal M, et al. Vector tile server in geographic information system in bapenda pekanbaru city, KLIK: Kajian Ilmiah Informatika dan Komputer. 2023; 3(6): 861-869.
Taşyürek M, Türkdamar MU, Öztürk C. DSHFS: a new hybrid approach that detects structures with their spatial location from large volume satellite images using CNN, GeoServer and TileCache. Neural Computing and Applications. 2023; 36(3): 1237-1259. doi: 10.1007/s00521-023-09092-w
Herzog DJ, Herzog NJ. Innovative frontiers: Post-quantum perspectives in healthcare and medical imaging. Imaging and Radiation Research. 2023; 6(1): 3852. doi: 10.24294/irr.v6i1.3852
Ortataş FN, Kaya M. Performance Evaluation of YOLOv5, YOLOv7, and YOLOv8 Models in Traffic Sign Detection. 2023 8th International Conference on Computer Science and Engineering (UBMK). Published online September 13, 2023. doi: 10.1109/ubmk59864.2023.10286611
Science D. Yolo object detection explained. Available online: https://www.datacamp.com/blog/yolo-object-detection-explained (accessed on 23 May 2023).
Terven J, Cordova-Esparza D. A comprehensive review of yolo: From yolov1 and beyond. arXiv. 2023; arXiv:2304.00501.
Sary IP, Andromeda S, Armin EU. Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection using Aerial Images. Ultima Computing: Jurnal Sistem Komputer. 2023; 15(1): 8-13.
Reis D, Kupec J, Hong J, Daoudi A. Real-time flying object detection with yolov8. arXiv. 2023; arXiv:2305.09972.
Liang H, Chen J, Xie W, et al. Defect detection of injection-molded parts based on improved-YOLOv5. Journal of Physics: Conference Series. 2022; 2390(1): 012049. doi: 10.1088/1742-6596/2390/1/012049
King R. Brief summary of YOLOv8 model structure. Available online: https://github.com/ultralytics/ultralytics/issues/189 (accessed on 23 May 2023).