The paper deals with the issues of the influence of forest cover on the average annual runoff of rivers in the Pripyat River basin. In the study area, under the influence of solar radiation, the temperature of the air and the soil surface increases, evaporation from the water surface also increases, and the moisture content of the upper layers of the soil decreases. In general, with an increase in forest cover, the annual layer of the runoff of the studied rivers increases, as well as with an increase in the amount of precipitation (in contrast to the runoff of short-term floods). However, with a forest cover of more than 20%–30% and a relatively small amount of precipitation, the runoff decreases, which is associated with the retention of part of the precipitation by the forest cover. With a large amount of precipitation and low forest cover, the runoff also decreases, which is probably due to the loss of precipitation water for evaporation, etc. The conducted studies show that, just as the forest affects water resources, the flow of moisture to watersheds also affects the state of forest systems. Moreover, this interaction is expressed by evaporation from forests. Under influence of change of a climate growth of evaporation is observed.
The purpose of this study is to look at the negative environmental impacts and social problems, which require a government response to maintain the sustainability of the palm oil industry. This research uses Online Research Methods (ORMs) to collect data and information through the internet and other digital technologies. The collected data was then coded using Nvivo 12 Plus. The purpose of this study is to fill the research void left by previous researchers by analyzing investment strategies and services in supporting the sustainability of the palm oil industry in Riau Province. This study shows that to support the potential of the palm oil industry to remain optimal, the central and local governments coordinate to provide investment services and pay attention to the sustainability issues of the palm oil industry. Some important aspects to consider are strengthening regulations, an integrated plantation licensing system, improving access to markets, RSPO certification, realization of foreign investment, downstream industry, replanting programme, plantation revitalisation programme, and sustainable plantation partnerships. However, there are still some crucial challenges, particularly land conflicts, climate change, environmental issues, limited technology and innovation, and export market dependence. These challenges may hamper future investment opportunities.
Tidal sea level variations in the Mediterranean basin, although altered and amplified by resonance phenomena in confined sub-basins (e.g., Adriatic Sea), are generally confined within 0.5 meters and exceptionally up to 1.5 meters. Here we explore the possibility of retrieving sea level measurements using data from GNSS antennas on duty for ground motion monitoring and analyze the spectral outcomes of such distinctive measurements. We estimate one year of GNSS data collected on the Mediterranean coasts in order to get reliable sea level data from all publicly available data and compare it with collocated tide gauges. A total of eleven stations were suitable for interferometric analysis (as of 2021), and all were able to supply centimeter-level sea level estimates. The spectra in the tidal frequency windows are remarkably similar to tide gauge data. We find that the O1 and M2 diurnal and semidiurnal tides and MK3, MS4 shallow sea water tides may be disturbed by aliasing effects.
The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
Prepolymers containing isocyanates must be prevented from curing when exposed to moisture, which can be achieved by blocking the isocyanate groups with a suitable agent. The study carefully examines several blocking agents, including methyl ethyl ketoxime (MEKO), caprolactam, and phenol, and concludes that methyl ethyl ketoxime is the best choice. Spectroscopic and thermal analyses, as well as oven curing studies, are conducted with various blocking agents and isocyanate prepolymer to castor oil ratios, revealing MEKO to be the most effective blocking agent which gets unblocked at higher temperatures.
Cucumber (Cucumis sativus L.) is a tropical vegetable and a source of vitamins such as K, C, and B. It is commonly grown and sold for daily consumption, but picking the right fruit size is more profitable. Therefore, a method for estimating the fruit weight is highly recommended. This paper aimed to determine the dimensions of cucumber fruit based on its usual harvesting size and to establish a model to show the relationship between fruit weight, fruit length, and fruit diameter. Cucumber was planted in the experimental field belonging to the Faculty of Agricultural Biosystems Engineering, Royal University of Agriculture, Phnom Penh, Cambodia, from January to June 2022. In the study, 48 market-size fruits were randomly selected from the plots to measure their weight, length, and diameter. The result shows that fruit length and fruit diameter had a positive relationship (P < 0.001; R = 0.70). Fruit weight was 3.38 fruit length × fruit diameter (P <0.001; R = 0.95). Nevertheless, L/D ratio negatively affected fruit weight, when it exceeded 3:1. Fruit weight was greater than 100 g when fruit diameter was over 4 cm and fruit length was over 10 cm. Therefore, when picking cucumber fruits, one must consider fruit length and diameter to be profitable. Further studies will focus on measuring cucumber fruit already available on the market to understand more about actual consumer preferences.
Copyright © by EnPress Publisher. All rights reserved.