Brereton G, Zhu Z, Ware P, King G. Development of superior blocked high-performance prepolymers utilizing low monomer technology. Available online: https://www.coatingsworld.com/issues/2020-01-01/view_technical-papers/development-of-superior-blocked-high-performance-prepolymers-utilizing-low-monomer-technology/#:~:text=After%20a%20conventional%20prepolymer%20is,to%20a%20blocked%20conventional%20prepolymer (accessed on 25 September 2023).
Lee JM, Subramani S, Lee YS, Kim JH. Thermal decomposition behavior of blocked diisocyanates derived from mixture of blocking agents. Macromolecular Research 2005; 13(5): 427–434. doi: 10.1007/BF03218476
Mühlebach A. Pyrazoles—A novel class of blocking agents for isocyanates. Polymer Chemistry 1994; 32(4): 753–765. doi: 10.1002/pola.1994.080320414
Wicks DA, Wicks ZW. Multistep chemistry in thin films; the challenges of blocked isocyanates. Progress in Organic Coatings 2001; 43(1–3): 131–140. doi: 10.1016/S0300-9440(01)00188-6
Kalaimani S, Ali BM, Nasar AS. Successful synthesis of blocked polyisocyanates, using easily cleavable phenols as blocking agents, and their deblocking and cure studies. RCS Advances 2016; 6(108): 106990–107000. doi: 10.1039/C6RA24409B
Zhang Y, Gu J, Jiang X, et al. Investigation on blocking and deblocking isocyanates by sodium bisulphite. Pigment & Resin Technology 2011; 40(6): 379–385. doi: 10.1108/03699421111180527
Jana S, Samanta D, Fahad MM, et al. Blocking and deblocking of diisocyanate to synthesize polyurethanes. Polymers 2021; 13(17): 2875. doi: 10.3390/polym13172875
Libni G, Ali BM, Sathiyaraj S, Nasar AS. Catalysis of cure reaction of ɛ-caprolactam-blocked polyisocyanate with diol using non-tin catalysts. Journal of Macromoloecular Science 2018; 55(7): 552–558. doi: 10.1080/10601325.2018.1481346
Petrak S, Shadurka V, Binder WH. Cleavage of blocked isocyanates within amino-type resins: Influence of metal catalysis on reaction pathways in model systems. Progress in Organic Coatings 2009; 66(3): 296–305. doi: 10.1016/j.porgcoat.2009.08.006