Transportation projects are crucial for the overall success of major urban, metropolitan, regional, and national development according to their capacity by bringing significant changes in socio-economic and territorial aspects. In this context, sustaining and developing economic and social activities depend on having sufficient Water Resources Management. This research helps to manage transport project planning and construction phases to analyze the surface water flow, high-level streams, and wetland sites for the development of transportation infrastructure planning, implementation, maintenance, monitoring, and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. A case study was carried out using the Arc Hydro extension within ArcGIS for processing and presenting the spatially referenced Stream Model. Geographical information systems have the potential to improve water resource planning and management. The study framework would be useful for solving water resource problems by enabling decision makers to collect qualitative data more effectively and gather it into the water management process through a systematic framework.
Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.
The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO2, kaolinite, and cement (TKCe),which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The clay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency, where TKCe with the optimum clay-cement ratio, which is 1:1, results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO2 interactions and TiO2-cement interactions. TiO2-cement interactions result in CaTiO3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1-1, which is 1.57 h−1 and is the highest among all the binary composite photocatalysts that were fabricated previously. The TKCe 1-1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3-1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
The provided material presents a priority article on the scientific discovery titled “The phenomenon of simultaneous destruction of water-oil and oil-water emulsions”. The authors propose the corresponding formula: the previously unknown phenomenon of simultaneous destruction of water-oil and oil-water emulsions occurs when polynanostructured surfactant demulsifiers with characteristics akin to crystalline liquids, intramolecular interblock activity, and enduring intramolecular nanomotors (such as block copolymers of ethylene and propylene oxides, which act as sources of oligomer homologues of oxyethylene ethers) are added to crude oil during primary oil processing. This phenomenon is attributed to the redistribution of oligomer homologues, with the most hydrophobic oxyethylene ethers being dispersed in water-oil emulsions and the most hydrophilic ones in oil-water emulsions, resulting in robust nanodispersed phases with crystalline liquid properties.
Copyright © by EnPress Publisher. All rights reserved.