Szczepanik B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Applied Clay Science. 2017; 141: 227-239. doi: 10.1016/j.clay.2017.02.029
Lofrano G, Rizzo L, Grassi M, et al. Advanced oxidation of catechol: A comparison among photocatalysis, Fenton and photo-Fenton processes. Desalination. 2009; 249(2): 878-883. doi: 10.1016/j.desal.2009.02.068
Lazar M, Varghese S, Nair S. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates. Catalysts. 2012; 2(4): 572-601. doi: 10.3390/catal2040572
Djafer L, Ayral A, Ouagued A. Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties. Separation and Purification Technology. 2010; 75(2): 198-203. doi: 10.1016/j.seppur.2010.08.001
Damodar RA, You SJ, Chou HH. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials. 2009; 172(2-3): 1321-1328. doi: 10.1016/j.jhazmat.2009.07.139
Liu L, Liu Z, Bai H, et al. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Research. 2012; 46(4): 1101-1112. doi: 10.1016/j.watres.2011.12.009
Bedford NM, Pelaez M, Han C, et al. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. Journal of Materials Chemistry. 2012; 22(25): 12666. doi: 10.1039/c2jm31597a
Tennakone K, Tilakaratne CTK, Kottegoda IRM. Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. Journal of Photochemistry and Photobiology A: Chemistry. 1995; 87(2): 177-179. doi: 10.1016/1010-6030(94)03980
Tennakone K, Kottegoda IRM. Photocatalytic mineralization of paraquat dissolved in water by TiO2 supported on polythene and polypropylene films. Journal of Photochemistry and Photobiology A: Chemistry. 1996; 93(1): 79-81. doi: 10.1016/1010-6030(95)04141-9
Kumara GRRA, Sultanbawa FM, Perera VPS, et al. Continuous flow photochemical reactor for solar decontamination of water using immobilized TiO2. Solar Energy Materials and Solar Cells. 1999; 58(2): 167-171. doi: 10.1016/S0927-0248(98)00200-1
Kibanova D, Trejo M, Destaillats H, et al. Synthesis of hectorite–TiO2 and kaolinite–TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Applied Clay Science. 2009; 42(3-4): 563-568. doi: 10.1016/j.clay.2008.03.00
Papoulis D, Komarneni S, Panagiotaras D, et al. Halloysite–TiO2 nanocomposites: Synthesis, characterization and photocatalytic activity. Applied Catalysis B: Environmental. 2013; 132-133: 416-422. doi: 10.1016/j.apcatb.2012.12.012
Zhao D, Zhou J, Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts. Materials Science and Engineering: A. 2006; 431(1-2): 256-262. doi: 10.1016/j.msea.2006.06.001
Kameshima Y, Tamura Y, Nakajima A, et al. Preparation and properties of TiO2/montmorillonite composites. Applied Clay Science. 2009; 45(1-2): 20-23. doi: 10.1016/j.clay.2009.03.005
Machado LCR, Torchia CB, Lago RM. Floating photocatalysts based on TiO2 supported on high surface area exfoliated vermiculite for water decontamination. Catalysis Communications. 2006; 7(8): 538-541. doi: 10.1016/j.catcom.2005.10.020
Nishikiori H, Shindoh J, Takahashi N, et al. Adsorption of benzene derivatives on allophane. Applied Clay Science. 2009; 43(2): 160-163. doi: 10.1016/j.clay.2008.07.024
Chong MN, Lei S, Jin B, et al. Optimisation of an annular photoreactor process for degradation of Congo Red using a newly synthesized titania impregnated kaolinite nano-photocatalyst. Separation and Purification Technology. 2009; 67(3): 355-363. doi: 10.1
Mamulová Kutláková K, Tokarský J, Kovář P, et al. Preparation and characterization of photoactive composite kaolinite/TiO2. Journal of Hazardous Materials. 2011; 188(1-3): 212-220. doi: 10.1016/j.jhazmat.2011.01.106
Zhang GK, Ding XM, He FS, et al. Low-Temperature Synthesis and Photocatalytic Activity of TiO2 Pillared Montmorillonite. Langmuir. 2008; 24(3): 1026-1030. doi: 10.1021/la702649v
Ding Z, Hu X, Yue PL, et al. Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catalysis Today. 2001; 68(1): 173-182. doi: 10.1016/S0920-5861(01)00298-X
Karunadasa KSP, Manoratne CH, Pitawala HMTGA, et al. A potential working electrode based on graphite and montmorillonite for electrochemical applications in both aqueous and molten salt electrolytes. Electrochemistry Communications. 2019; 108: 106562. doi
Karunadasa KSP, Rathnayake D, Manoratne C, et al. A binder‐free composite of graphite and kaolinite as a stable working electrode for general electrochemical applications. Electrochemical Science Advances. 2021; 1(4). doi: 10.1002/elsa.202100003
Rathnayake DT, Karunadasa KSP, Wijekoon ASK, et al. Low-cost ternary composite of graphite, kaolinite and cement as a potential working electrode for general electrochemical applications. Chemical Papers. 2022; 76(10): 6653-6658. doi: 10.1007/s11696-022-0
Madhushanka PMH, Karunadasa KSP, Gamini Rajapakse RM, et al. Low-cost composite electrode consisting of graphite, colloidal graphite and montmorillonite with enhanced electrochemical performance for general electroanalytical techniques and device fabricat
Rathnayake DT, Karunadasa KSP, Wijekoon ASK, et al. Polyaniline-conjugated graphite–montmorillonite composite electrode prepared by in situ electropolymerization for supercapacitor applications. Chemical Papers. 2023; 77(5): 2923-2928. doi: 10.1007/s11696
Karunadasa KSP, Wijekoon ASK, Manoratne CH. TiO2-kaolinite composite photocatalyst for industrial organic waste decontamination. Next Materials. 2024; 3: 100065. doi: 10.1016/j.nxmate.2023.100065
Gunarathne PPB, Karunadasa KSP. Low-cost heterogeneous composite photocatalyst consisting of TiO2, kaolinite and MMT with improved mechanical strength and photocatalytic activity for industrial wastewater treatment. Insight - Mechanics. 2023; 6(1). doi: 1
Temenoff JS. Biomaterials: The Intersection of Biology and Materials science, 1st ed. Pearson prentice Hall; 2008. pp. 151-159.
Alkaykh S, Mbarek A, Ali-Shattle EE. Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon. 2020; 6(4): e03663. doi: 10.1016/j.heliyon.2020.e03663
Kasanen J, Salstela J, Suvanto M, et al. Photocatalytic degradation of methylene blue in water solution by multilayer TiO2 coating on HDPE. Applied Surface Science. 2011; 258(5): 1738-1743. doi: 10.1016/j.apsusc.2011.10.028
Al-Rawashdeh NAF, Allabadi O, Aljarrah MT. Photocatalytic Activity of Graphene Oxide/Zinc Oxide Nanocomposites with Embedded Metal Nanoparticles for the Degradation of Organic Dyes. ACS Omega. 2020; 5(43): 28046-28055. doi: 10.1021/acsomega.0c03608
Dharma HNC, Jaafar J, Widiastuti N, et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes. 2022; 12(3): 345. doi: 10.3390/membranes12030345
Karunadasa KSP, Manoratne CH. Microstructural view of anatase to rutile phase transformation examined by in-situ high-temperature X-ray powder diffraction. Journal of Solid State Chemistry. 2022; 314: 123377. doi: 10.1016/j.jssc.2022.123377
Sengyang P, Rangsriwatananon K, Chaisena A. Preparation of zeolite N from metakaolinite by hydrothermal method. Journal of Ceramic Processing Research. 2015; 16(1): 111-116.
Křenek T, Kovářík T, Pola J, et al. Nano and micro-forms of calcium titanate: Synthesis, properties and application. Open Ceramics. 2021; 8: 100177. doi: 10.1016/j.oceram.2021.100177
Karunadasa KSP, Manoratne CH, Pitawala HMTGA, et al. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids. 2019; 134: 21-28. doi: 10.101
Karunadasa KSP. Dehydration of Calcium Chloride as Examined by High-temperature X-ray Powder Diffraction. International Multidisciplinary Research Journal. 2019; 4: 37-43.
Cho J, Waetzig GR, Udayakantha M, et al. Incorporation of Hydroxyethylcellulose-Functionalized Halloysite as a Means of Decreasing the Thermal Conductivity of Oilwell Cement. Scientific Reports. 2018; 8(1). doi: 10.1038/s41598-018-34283-0
Portia SAU, Srinivasan R, Elaiyappillai E, et al. Facile synthesis of Eu-doped CaTiO3 and their enhanced supercapacitive performance. Ionics. 2020; 26(7): 3543-3554. doi: 10.1007/s11581-020-03494-9
Ohtani B, Prieto-Mahaney OO, Li D, et al. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry. 2010; 216(2-3)