In order to promote the application of noise map in high-speed railway noise management, the high-speed railway noise map drawing technology based on the combination of noise prediction model and geographic information system (GIS) is studied. Firstly, according to the distribution characteristics of noise sources and line structure characteristics of high-speed railway, the prediction model of multi equivalent sound sources and the calculation method of sound barrier insertion loss of high-speed railway are optimized; secondly, a three-dimensional geographic information model of a high-speed railway is built in GIS software, and the railway noise prediction technology based on the model is developed again; then, the noise of discrete nodes is calculated, and the continuous noise distribution map is drawn by spatial interpolation. The research results show that the comparison error between the noise map of a high-speed railway drawn by this technology and the measured results is less than 1 dB (A), which verifies the accuracy and practicality of the high-speed railway noise map, and can be used as a reference for the railway noise management department to formulate noise control countermeasures.
Adsorption is a widely used method for the treatment of dissolved contaminants. Various agro-industrial wastes have been explored as potential adsorbents, showing high efficiency in dye removal. Each adsorbate-adsorbent pair needs kinetic, and equilibrium models to scale up this process. In this work, the equilibrium, kinetics and thermodynamics of the corn Tuza-Red 40 system were evaluated under batch system at ph = 2.0 at temperatures of 25, 40, and 55 °C. The Langmuir, Freundlich and Temkin models were selected for the isotherm representation, while the Lagergren, Ho, and Elovich equations for the kinetics of the process. The Freundlich model presented the best fit to the isotherms, the adsorption kinetics was best described by the Ho equation, and the values for Gibbs free energy and entropy indicated the spontaneity and feasibility of the process.
Inequity in infrastructure distribution and social injustice’s effects on Ethiopia’s efforts to build a democratic society are examined in this essay. By ensuring fair access to infrastructure, justice, and economic opportunity, those who strive for social justice aim to redistribute resources in order to increase the well-being of individuals, communities, and the nine regional states. The effects that social inequity and injustice of access to infrastructure have on Ethiopia’s efforts to develop a democratic society were the focus of the study. Time series analysis using principal component analysis (PCA) and composite infrastructure index (CII), as well as structural equation modeling–partial least squares (SEM-PLS), were necessary to investigate this issue scientifically. This study also used in-depth interviews and focus group discussions to support the quantitative approach. The research study finds that public infrastructure investments have failed or have been disrupted, negatively impacting state- and nation-building processes of Ethiopia. The findings of this research also offer theories of coordination, equity, and infrastructure equity that would enable equitable infrastructure access as a just and significant component of nation-building processes using democratic federalism. Furthermore, this contributes to both knowledge and methodology. As a result, indigenous state capability is required to assure infrastructure equity and social justice, as well as to implement the state-nation nested set of policies that should almost always be a precondition for effective state- and nation-building processes across Ethiopia’s regional states.
Through the combination of the geographic information systems (GIS) and the integrated information model, the stability of regional bank slope was comprehensively evaluated. First, a regional bank slope stability evaluation index system was established through studying seven selected factors (slope grade, slope direction, mountain shadow, elevation, stratigraphic lithology, geological structure and river action) that have an impact on the stability of the slope. Then, each factor was rasterized by GIS. According to the integrated information model, the evaluation index distribution map based on rasterized factors was obtained to evaluate the stability of the regional bank slope. Through the analysis of an actual project, it was concluded that the geological structure and stratigraphic lithology have a significant impact on the evaluation results. Most of the research areas were in the relatively low stable areas. The low and the relatively low stable areas accounted for 15.2% and 51.5% of the total study area respectively. The accuracy of slope evaluation results in the study area reached 95.41%.
To analyze the effect of an increase in the quantity or quality of public investment on growth, this paper extends the World Bank’s Long-Term Growth Model (LTGM), by separating the total capital stock into public and private portions, with the former adjusted for its quality. The paper presents the LTGM public capital extension and accompanying freely downloadable Excel-based tool. It also constructs a new infrastructure efficiency index, by combining quality indicators for power, roads, and water as a cardinal measure of the quality of public capital in each country. In the model, public investment generates a larger boost to growth if existing stocks of public capital are low, or if public capital is particularly important in the production function. Through the lens of the model and utilizing newly-collated cross-country data, the paper presents three stylized facts and some related policy implications. First, the measured public capital stock is roughly constant as a share of gross domestic product (GDP) across income groups, which implies that the returns to new public investment, and its effect on growth, are roughly constant across development levels. Second, developing countries are relatively short of private capital, which means that private investment provides the largest boost to growth in low-income countries. Third, low-income countries have the lowest quality of public capital and the lowest efficient public capital stock as a share of GDP. Although this does not affect the returns to public investment, it means that improving the efficiency of public investment has a sizable effect on growth in low-income countries. Quantitatively, a permanent 1 ppt GDP increase in public investment boosts growth by around 0.1–0.2 ppts over the following few years (depending on the parameters), with the effect declining over time.
Fire, a phenomenon occurs in most parts of the world and causes severe financial losses, even, irreparable damages. Many parameters are involved in the occurrence of a fire; some of which are constant over time (at least in a fire cycle), but the others are dynamic and vary over time. Unlike the earthquake, the disturbance of fire depends on a set of physical, chemical, and biological relations. Monitoring the changes to predict the occurrence of fire is efficient in forest management. Method: In this research, the Persian and English databases were structurally searched using the keywords of fire risk modeling, fire risk, fire risk prediction, remote sensing and the reviewed papers that predicted the fire risk in the field of remote sensing and geographic information system were retrieved. Then, the modeling and zoning data of fire risk prediction were extracted and analyzed in a descriptive manner. Accordingly, the study was conducted in 1995-2017. Findings: Fuzzy analytic hierarchy process (AHP) zoning method was more practical among the applied methods and the plant moisture stress measurement was the most efficient among the remote sensing indices. Discussion and Conclusion: The findings indicate that RS and GIS are effective tools in the study of fire risk prediction.
Copyright © by EnPress Publisher. All rights reserved.