This research looks into the differences in technological practices across Gen-X, Gen-Y, and Gen-Z employees in the workplace, with an emphasis on motivation, communication, collaboration, and productivity gaps. The study uses a systematic literature review to identify factors that contribute to these variations, taking into account each generation’s distinct experiences, communication methods, working attitudes, and cultural backgrounds. Bridging generational gaps, providing ongoing training, and incorporating cross-generational and technology-enhanced practices are all required in today’s workplace. This study compares the dominating workplace generations, Gen-X and Gen-Y, with the emerging Gen-Z. A review of the literature from 2010 to 2023, which was narrowed down from 1307 to 20 significant studies, emphasizes the importance of organizational management adapting to generational changes in order to increase productivity and maintain a healthy workplace. The study emphasizes the need of creating effective solutions for handling generational variations in workplace.
In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
The food industry progressively requires innovative and environmentally safe packaging materials with increased physical, mechanical, and barrier properties. Due to its unique properties, cellulose has several potential applications in the food industry as a packaging material, stabilizing agent, and functional food ingredient. A coffee pod is a filter of cellulosic, non-rigid, ready-made material containing ground portions and pressed coffee prepared in dedicated machines. In our study, we obtained, with homogenization and sonication, cellulose micro/nanoparticles from three different coffee pods. It is known that nanoparticulate systems can enter live cells and, if ingested, could exert alterations in gastrointestinal tract cells. Our work aims to investigate the response of HT-29 cells to cellulose nanoparticles from coffee pods. In particular, the subcellular effects between coffee-embedded nanocellulose (CENC) and cellulose nanoparticles (NC) were compared. Finally, we analysed the pathologic condition (Cytolethal Distending Toxin (CDT) from Campylobacter jejuni) on the same cells conditioned by NC and CENC. We evidenced that, for the cellular functional features analysed, NC and CENC pre-treatments do not worsen cell response to the C. jejuni CDT, also pointing out an improvement of the autophagic flux, particularly for CENC preconditioning.
Hybrid learning (HL) has become a significant part of the learning style for the higher education sector in the Sri Lankan context amidst the COVID-19 pandemic and the subsequent economic crisis. This research study aims to discover the effectiveness of hybrid learning (EHL) practices in enhancing undergraduates’ outcomes in Sri Lankan Higher Educational Institutions (HEIs) management faculties. The data for the study were gathered through an online questionnaire survey, which received 379 responses. The questionnaire contained 38 questions under four sections covering independent variables, excluding demographic questions. The results indicate that hybrid learner attitude, interaction, and benefits of hybrid learning positively impact the effectiveness of hybrid learning. The results remain consistent even after controlling for socio-demographic factors and focusing only on students employed during their higher education. The study concluded that employed students have a higher preference for the effectiveness of hybrid learning concepts, and the benefits of hybrid learning play a crucial role in enhancing the effectiveness among undergraduates. The study analyzes COVID-19’s impact on higher education, proposing hybrid learning and regulatory frameworks based on pandemic experiences while stressing the benefits of remote teaching and research.
Recent research efforts have increasingly concentrated on creating innovative biomaterials to improve bone tissue engineering techniques. Among these, hybrid nanomaterials stand out as a promising category of biomaterials. In this study, we present a straightforward, cost-efficient, and optimized hydrothermal synthesis method to produce high-purity Ta-doped potassium titanate nanofibers. Morphological characterizations revealed that Ta-doping maintained the native crystal structure of potassium titanate, highlighting its exciting potential in bone tissue engineering.
The purpose of this study is to predict the frequency of mortality from urban traffic injuries for the most vulnerable road users before, during and after the confinement caused by COVID-19 in Santiago de Cali, Colombia. Descriptive statistical methods were applied to the frequency of traffic crash frequency to identify vulnerable road users. Spatial georeferencing was carried out to analyze the distribution of road crashes in the three moments, before, during, and after confinement, subsequently, the behavior of the most vulnerable road users at those three moments was predicted within the framework of the probabilistic random walk. The statistical results showed that the most vulnerable road user was the cyclist, followed by motorcyclist, motorcycle passenger, and pedestrian. Spatial georeferencing between the years 2019 and 2020 showed a change in the behavior of the crash density, while in 2021 a trend like the distribution of 2019 was observed. The predictions of the daily crash frequencies of these road users in the three moments were very close to the reported crash frequency. The predictions were strengthened by considering a descriptive analysis of a range of values that may indicate the possibility of underreporting in cases registered in the city’s official agency. These results provide new elements for policy makers to develop and implement preventive measures, allocate emergency resources, analyze the establishment of policies, plans and strategies aimed at the prevention and control of crashes due to traffic injuries in the face of extraordinary situations such as the COVID-19 pandemic or other similar events.
Copyright © by EnPress Publisher. All rights reserved.