Realistic project scheduling and control are critical for running a profitable enterprise in the construction industry. Finance-based scheduling aims to produce more realistic schedules by considering both resource and cash constraints. Since the introduction of finance-based scheduling, its literature has evolved from a single-objective model to a multi-objective model and also from a single-project problem to a multi-project problem for a contractor. This study investigates the possibility of cooperation among contractors with concurrent projects to minimize financial costs. Contractors often do not use their entire credit and may be required to pay a penalty for the unused portions. Therefore, contractors are willing to share these unused portions to decrease their financing costs and consequently improve their overall profits. This study focuses on the partnering of two contractors in a joint finance-based scheduling where contractors are allowed to lend credit to or borrow credit from each other at an internal interest rate. We apply this approach to an illustrative example in which two concurrent projects have the potential for partnering. Results show that joint finance-based scheduling reduces the financing cost for both contractors and leads to additional overall profits. Our further analyses highlight the intricate dynamics impacting additional net profit, revealing optimal scenarios for cooperation in complex project networks.
Accurate prediction of US Treasury bond yields is crucial for investment strategies and economic policymaking. This paper explores the application of advanced machine learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, in forecasting these yields. By integrating key economic indicators and policy changes, our approach seeks to enhance the precision of yield predictions. Our study demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal dependencies and complexities inherent in financial data. The inclusion of macroeconomic and policy variables significantly improves the models’ predictive accuracy. This research underscores a pioneering movement for the legacy banking industry to adopt artificial intelligence (AI) in financial market prediction. In addition to considering the conventional economic indicator that drives the fluctuation of the bond market, this paper also optimizes the LSTM to handle situations when rate hike expectations have already been priced-in by market sentiment.
E-cigarettes pose a significant public health concern, particularly for youth and young adults. Policymaking in this area is complicated by changing consumption patterns, diverse user demographics, and dynamic online and offline communities. This study uses social network analytics to examine the social dynamics and communication patterns related to e-cigarette use. We analyzed data from various social media platforms, forums, and online communities, which included both advocacy for e-cigarettes as a safer smoking alternative and opposition due to health risks. Our findings inform targeted healthcare policy interventions, such as educational campaigns tailored to specific network clusters, regulations based on user interaction and influence patterns, and collaborations with key influencers to spread accurate health information.
In agriculture, crop yield and quality are critical for global food supply and human survival. Challenges such as plant leaf diseases necessitate a fast, automatic, economical, and accurate method. This paper utilizes deep learning, transfer learning, and specific feature learning modules (CBAM, Inception-ResNet) for their outstanding performance in image processing and classification. The ResNet model, pretrained on ImageNet, serves as the cornerstone, with introduced feature learning modules in our IRCResNet model. Experimental results show our model achieves an average prediction accuracy of 96.8574% on public datasets, thoroughly validating our approach and significantly enhancing plant leaf disease identification.
The evolution of the internet has led to the emergence of social media (SM) platforms, offering dynamic environments for user interaction and content creation. Social media, characterized by user-generated content, has become integral to electronic communication, fostering higher engagement and interaction. This study aims to explore the utilization of SM marketing, particularly in Higher Education Institutions (HEIs), focusing on Széchenyi István University’s academic social network sites (SNS) as a case study to enhance student engagement and satisfaction. The primary objective of this study is to review recent academic literature on SM marketing, especially for HEI marketing, and investigate the potential of the University’s SNS platforms as a case study in increasing student engagement. First a systematic literature review was conducted using Scopus and Science Direct databases to analyze recent research in academic SM. Then the article examined the University’s website and SNS platforms using the Facepager program to collect and analyze posts’ content. The findings from the literature review and observation indicate the growing importance of SM in higher education marketing. The university’s use of various SM strategies, such as visual storytelling, multimedia content, blogs, and user-generated content, contributes to increased student engagement of the university’s values.
This research presents a novel approach utilizing a self-enhanced chimp optimization algorithm (COA) for feature selection in crowdfunding success prediction models, which offers significant improvements over existing methods. By focusing on reducing feature redundancy and improving prediction accuracy, this study introduces an innovative technique that enhances the efficiency of machine learning models used in crowdfunding. The results from this study could have a meaningful impact on how crowdfunding campaigns are designed and evaluated, offering new strategies for creators and investors to increase the likelihood of campaign success in a rapidly evolving digital funding landscape.
Copyright © by EnPress Publisher. All rights reserved.