Polymer waste drilling fluid has extremely high stability, and it is difficult to separate solid from liquid, which has become a key bottleneck problem restricting its resource recycling. This study aims to reveal the stability mechanism of polymer waste drilling fluid and explore the destabilization effect and mechanism of ultrasonic waste drilling fluid. Surface analysis techniques such as X-ray energy spectrum and infrared spectrum were used in combination with colloidal chemical methods to study the spatial molecular structure, stability mechanism, and ultrasonic destabilization mechanism of drilling fluid. The results show that the particles in the drilling fluid exist in two forms: uncoated particles and particles coated by polymers, forming a high molecular stable particle system. Among them, rock particles not coated by polymer follow the vacancy stability and Derjaguin-Landau-Verwey-Overbeek (DLVO) stability mechanism, and the weighting material coated by the polymer surface follows the space stability and DLVO stability mechanism. The results of ultrasonic destabilization experiments show that after ultrasonic treatment at 1000 W power for 5 min, coupled with the addition of 0.02% cationic polyacrylamide, the dehydration rate is as high as 81.0%, and the moisture content of the mud cake is as low as 29.3%, achieving an excellent solid-liquid separation effect. Ultrasound destabilizes polymer waste drilling fluid by destroying the long-chain structure of the polymer. This study provides theoretical support and research direction for the research and development of polymer waste drilling fluid destabilization technology.
Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages.
Climate change plays a vital role in shaping the knowledge construction of farmers for managing their agricultural land. Therefore, this study aims to analyze the coffee farmers’ knowledge construction process regarding climate change. This research utilizes qualitative methods. This research approach uses the grounded theory, which can help researchers uncover the relationship between the coffee farmers’ knowledge construction and climate change. The data were collected through semi-structured interviews and analyzed using constant comparative methods. The transcription of the field notes was analyzed using NVivo version 12, a program for analyzing qualitative data. There were 33 informants in the study. This study found that the conditions and situations of wind speed and uncertain whether strongly influence the farmers’ construction of climate knowledge. Coffee farmers are looking for new ways to respond to climate change, such as increasing the intensity of the care they give to their coffee plants, gradually harvesting according to the ripeness of the coffee fruits, finding alternative ways to dry the coffee beans, and reducing the use of fertilizer. However, coffee farmers are also starting to adapt old knowledge from their parents to the latest perceived climate phenomena, so that they can look for alternative sources of livelihood outside their farms. This knowledge construction process serves as a form of adaptation by the coffee farmers to climate change, and reflects the dynamic between traditional knowledge and current experience. Understanding this knowledge construction helps coffee farmers to cope with climate change and to design appropriate policy strategies to support the sustainability of coffee farming in an era of climate change. Further research is needed at the regional level.
Copyright © by EnPress Publisher. All rights reserved.