This paper investigates the evolving clustering and historical progression of “Asian regionalisms” concerning their involvement in multilateral treaties deposited in the United Nations system. We employ criteria such as geographic proximity, historical connections, cultural affinities, and economic interdependencies to identify twenty-eight candidate countries from East Asia, Southeast Asia, South Asia, and Central Asia for this empirical testing. Using a social network analysis approach, we model the network of these twenty-eight Asian state actors alongside 600 major treaties from the United Nations system, identifying clusters among Asian states by assessing similarities in their treaty participation behavior. Specifically, we observe dynamic changes in these clusters across three key historical eras: Post-war reconstruction and transformation (1945–1968), Cold War tensions and global transformations (1969–1989), and post-Cold War era and globalization (1990–present). Employing the Louvain cluster detection algorithm, the results reveal the evolution in cluster numbers and changes in membership status throughout the world timeline. The results also identify the current situation of six distinct Asian clusters based on states’ inclinations to engage or abstain from multilateral treaties across six policy domains. These findings provide a foundation for further research on the trajectories of Asian regionalisms amidst evolving global dynamics and offer insights into potential alliances, cooperation, or conflicts within the region.
The present study focuses on improving Cognitive Radio Networks (CRNs) based on applying machine learning to spectrum sensing in remote learning scenarios. Remote education requires connection dependability and continuity that can be affected by the scarcity of the amount of usable spectrum and suboptimal spectrum usage. The solution for the proposed problem utilizes deep learning approaches, namely CNN and LSTM networks, to enhance the spectrum detection probability (92% detection accuracy) and consequently reduce the number of false alarms (5% false alarm rate) to maximize spectrum utilization efficiency. By developing the cooperative spectrum sensing where many users share their data, the system makes detection more reliable and energy-saving (achieving 92% energy efficiency) which is crucial for sustaining stable connections in educational scenarios. This approach addresses critical challenges in remote education by ensuring scalability across diverse network conditions and maintaining performance on resource-constrained devices like tablets and IoT sensors. Combining CRNs with new technologies like IoT and 5G improves their capabilities and allows these networks to meet the constantly changing loads of distant educational systems. This approach presents another prospect to spectrum management dilemmas in that education delivery needs are met optimally from any STI irrespective of the availability of resources in the locale. The results show that together with machine learning, CRNs can be considered a viable path to improving the networks’ performance in the context of remote learning and advancing the future of education in the digital environment. This work also focuses on how machine learning has enabled the enhancement of CRNs for education and provides robust solutions that can meet the increasing needs of online learning.
The discourse on advocacy planning involving actors has not explicitly addressed the question of who the actor advocate planner is and how an actor can become an advocate planner. This paper attempts to exploring the actor advocate planner in the context of Regional Splits as, employing social network analysis as a research tool. This research employs an exploratory, mixed-methods approach, predominantly qualitative in nature. The initial phase entailed the investigation and examination of qualitative data through the acquisition of information from interviews with key stakeholders involved in Regional Splits, including communities, non-governmental organizations (NGOs), governmental entities, and political parties. The subsequent phase utilized quantitative techniques derived from the findings of the qualitative analysis, which were then analysis into the Gephi application. The findings indicate that the Regional Splits the Presidium Community represents civil society and political parties serve as crucial advocate planners, facilitating connections between disparate actors and promoting Regional Splits through political parties.
Ancestral knowledge is essential in the construction of learning to preserve the sense of relevance, transmit and share knowledge according to its cultural context, and maintain a harmonious relationship with nature and sustainability. The objective of this research is to study and analyze the management of ancestral knowledge in the production of the Raicilla to provide elements to rural communities, producers, and facilitators in decision-making to be able to innovate and be more productive, competitive, sustainable, and improve people’s quality of life. The methodological strategy was carried out through Bayesian networks and Fuzzy Logic. To this end, a model was developed to identify and quantify the critical factors that impact optimally managed technology to generate value that translates into innovation and competitive advantages. The evidence shows that the optimal and non-optimal management of knowledge, technology, and innovation management and its factors, through the causality of the variables, permits us to capture the interrelationship more adequately and manage them. The results show that the most relevant factors for adequate management of ancestral knowledge in the Raicilla sector are facilitators, denomination of origin, extraction and fermentation, and government. The proposed model will support these small producers and help them preserve their identity, culture, and customs, contributing greatly to environmental sustainability.
In today’s highly competitive environment, enterprises strive for competitive advantages by actively responding to changes in the network environment through digital technology. This approach fosters continuous innovation and establishes new paradigms by creating new network structures and relationships. However, research on the relationship and transmission mechanisms between digital technology and innovation performance in dynamic environments is still in its early stages, which does not fully address the demands of current social practice. Therefore, exploring the impact mechanisms of digital technology applications on enterprise innovation performance is an important research area. Based on the dynamic capability theory, this paper utilized SPSS 26.0 and AMOS 24.0 software to conduct an empirical analysis of 490 valid samples from the network perspective, exploring the pathways through which digital technology capability influences enterprise innovation performance. The results indicate that (1) digital technology capability is positively correlated with enterprise innovation performance; (2) digital technology capability is positively correlated with network responsiveness; (3) network responsiveness is positively correlated with enterprise innovation performance; (4) network responsiveness plays a mediating role in the impact of digital technology capability on enterprise innovation performance; (5) environmental dynamism positively moderates the relationship between digital technology capability and enterprise innovation performance. This paper enhances the understanding of how digital technology capability influences enterprise innovation performance in dynamic environments, offering new insights for future research. The results suggest that enterprises should focus on enhancing their digital technology capabilities, optimizing network structures, and strengthening network relationships to drive digital innovation.
Accurate prediction of US Treasury bond yields is crucial for investment strategies and economic policymaking. This paper explores the application of advanced machine learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, in forecasting these yields. By integrating key economic indicators and policy changes, our approach seeks to enhance the precision of yield predictions. Our study demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal dependencies and complexities inherent in financial data. The inclusion of macroeconomic and policy variables significantly improves the models’ predictive accuracy. This research underscores a pioneering movement for the legacy banking industry to adopt artificial intelligence (AI) in financial market prediction. In addition to considering the conventional economic indicator that drives the fluctuation of the bond market, this paper also optimizes the LSTM to handle situations when rate hike expectations have already been priced-in by market sentiment.
Copyright © by EnPress Publisher. All rights reserved.