Nanomaterials stand as transformative elements across diverse domains, ranging from biotechnology, aircraft, aviation, and space exploration to medicine, health, environmental preservation, resources, energy, and aerospace. This issue, comprising nine original research articles and two insightful reviews, we embark on a journey to unravel the multifaceted uses of nanomaterials, with a special emphasis on their contributions to environmental protection and medicine. Delving into the unique traits of various nanomaterials, our aim is to provide readers with a comprehensive understanding that transcends conventional boundaries, fostering a deeper appreciation for the impact of nanomaterials.
The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO2, kaolinite, and cement (TKCe),which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The clay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency, where TKCe with the optimum clay-cement ratio, which is 1:1, results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO2 interactions and TiO2-cement interactions. TiO2-cement interactions result in CaTiO3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1-1, which is 1.57 h−1 and is the highest among all the binary composite photocatalysts that were fabricated previously. The TKCe 1-1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3-1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
This paper highlights the opportunities as well as challenges posed for Bangladesh by the Belt and Road Initiative (BRI) of China. BRI is being considered as the most expensive project ever initiated connecting more than half of the world population from Asia, Europe and Africa. For writing this paper, the authors utilized published sources such as journal articles, newspaper articles and web-based information published from 2013 to 2024. The article proposes that although the involvement of Bangladesh in the BRI is not absolutely free of challenges, it can serve the ultimate national interest through greater connectivity with other countries, increased volume of trade and economic activities and socio-cultural exchange. Although, as the originator and major contributor of the BRI, China will be the principal benefiter, other partner countries can also attain considerable benefits out of this historical mega scheme through the application of appropriate vision and strategic implementation. This paper has highlighted those benefits/opportunities and challenges for Bangladesh that can be beneficial for upcoming research projects particularity aimed at development studies, political economy and international relations. On the other hand, based on the arguments made on this paper, policymakers and businessmen can formulate their best policies as well as trading strategies with mutual benefits for all the stakeholders involved.
In order to replace conventional materials in the existing composite world, there has been a focus on adopting coir fibres, which are lightweight, adaptable, efficient, and have great mechanical qualities. This study describes the creation of environmentally responsible bio-composites with good mechanical characteristics that employ coir powder as a reinforcement, which has good interfacial integrity with an epoxy matrix. And these epoxy-coir composites supplemented with coir particles are predicted to function as a reliable substitute for traditional materials used in industrial applications. Here, untreated and alkali-treated coir fibres powder were employed as reinforcement, with epoxy resin serving as a matrix. An experimental investigation has been carried out to study the effect of coir powder reinforcement at different weight percentages (5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%). The morphological study, followed by a scanning electron microscope (SEM) and an optical microscope (OM), demonstrated that the powder and matrix had the strongest adhesion at 20 wt% coir powder-reinforced composite, with no voids, bubbles, or cracks. Based on the entire investigation, the polymer composite with 20 wt% reinforcement exhibited better mechanical qualities than the other combinations.
Land suitability analysis using geographic information systems (GIS) is one of the most widely used method today. In this type of studies, GIS and geo-spatial statistical tools are used to evaluate land units and present the results in suitability maps. The present work aims to characterize the suitability of soils in the province of Catamarca for pecan nut production according to the variables: rockiness, salinity, risk of water-logging, depth, texture and drainage described in the Soil Map of Argentina at a scale of 1:500,000 published by the National Institute of Agricultural Technology. A classification of the suitability of the soil cartographic units was made according to crop requirements, applying the methodology proposed by FAO. The standardization of variables made by omega score and the calculation of the spatial classification score were carried out as a result of the synthesis of the spatial distribution of soil suitability. The applied methodology allowed obtaining the soil suitability map resulting in a total of 60,662 km2 suitable for pecan nut production, which accounts for 59.8% of the total area of the province.
Copyright © by EnPress Publisher. All rights reserved.