The significant climate change the planet has faced in recent decades has prompted global leaders, policymakers, business leaders, environmentalists, academics, and scientists from around the world to unite their efforts since 1987 around sustainable development. This development not only promotes economic sustainability but also environmental, social, and corporate sustainability, where clean production, responsible consumption, and sustainable infrastructures prevail. In this context, the present article aims to propose a development framework for sustainability in food sector SMEs, which includes Life Cycle Assessment (LCA) and the integration of Environmental, Social, and Governance (ESG) strategies as key elements to reduce CO2 emissions and improve operational efficiency. The methodology includes a comparative analysis of strategies implemented between 2019 and 2023, supported by quantitative data showing a 20% reduction in operating costs, a 10% increase in market share, and a 25% increase in productivity for companies that adopted clean technologies. This study offers a significant contribution to the field of corporate sustainability, providing a model that is adaptable and applicable across different regions, enhancing innovation and business resilience in a global context that requires collective efforts to achieve the sustainable development goals.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.
This study aims to analyze Closed Varosha, a prominent tourist destination in the Eastern Mediterranean, as a traumatic landscape in the 1970s. This study also seeks to evaluate this site from the perspective of landscape architecture, with a particular focus on urban memory and dark tourism concepts, and to introduce the concept of “traumatic landscapes” to the existing literature on the subject. The case study analysis, on-site observation and document examination techniques were employed as research methods. A comprehensive literature review was conducted as part of this study, encompassing data on Closed Varosha, the study area, and its surrounding context. The Varosha city visited with the assistance of a travel guide, and comprehensive information and visual materials (photographs, video footage, etc.) collected in the field study. Study results proposed that the landscapes where social traumas are experienced and which have become a symbol should be used for cultural and scientific activities. This may be achieved by making use of urban memory in order to transform these landscapes into an improved version of the existing ones. Furthermore, this could serve to awaken the awareness of universal peace in visitors within the scope of dark tourism. Another potential avenue for exploration is the organization of common sense workshops with the participation of stakeholders from both communities. This could facilitate the development of future solutions through a participatory approach. Additionally, there is a need to expand transnational and multidisciplinary studies. This would enable future generations to engage in dialogue about Closed Varosha in a constructive manner.