Introduction: Stenoses in the path of arteriovenous fistulas (AVF) for hemodialysis are a very prevalent problem and there is long experience in their treatment by percutaneous angioplasty (PTA). These procedures, however, involve non-negligible equipment requirements, exposure to radiation and intravenous contrast that are not beneficial for the patient and make their performance more complex. This study reviews our initial experience with Doppler ultrasound-guided angioplasty. Methods: Prospective cohort of patients with native AVF dysfunction due to significant venous stenosis treated by Doppler echo-guided PTA. AVF puncture, lesion catheterization, balloon localization and inflation, and outcome verification were performed under ultrasound guidance. Only one fistulography was performed before and another one after dilatation. As a control, the cases performed during the same period by the usual angiographic method were also collected. Results: Between February 2015 and September 2018, 51 PTAs were performed on native AVF, of which 27 were echogenic (mean age, 65.3 years; 63% male). The technical success rate was 96%. In 26% of cases, PTA was repeated due to residual stenosis after angiographic imaging. There were 7.3% periprocedural complications. 92% of the AVFs were punctured at 24 hours. Primary patency at 1 month, 6 months and 1 year was 100%, 64.8% and 43.6%, and assisted patency was 100%, 87.2% and 74.8%. There were no significant differences in immediate or late results with respect to angiographically guided AVF angioplasty. Conclusions: AVF-PTA can be performed safely and effectively guided by Doppler ultrasound, which simplifies the logistics required for its performance, although we still need to improve the capacity for early verification of the result with this imaging technique.
Introduction: In Colombia, the last oral health study showed that about 70% of the population has partial edentulism while 5.2% will have lost all their teeth between the age of 65 and 79. Rehabilitation with implants is an increasingly used option, which requires clinical and radiographic follow-up. Panoramic radiography is a low-cost option, in which it is possible to observe areas of bone loss, mesiodistal angulation of the implant, relationship with anatomical structures and lesions suggestive of peri-implantitis. Reports and analysis of relevant data on radiographic findings associated with dental implants are required to determine the risk factors for their success in patients who use them. Objective: To determine the prevalence and characterize the findings associated with osseointegration implants in panoramic radiographs. Methods: A descriptive cross-sectional observational study was carried out with 10,000 digital panoramic radiographs selected by convenience from radiological centers in the city of Bogota, Colombia, of which 543 corresponded to the sample analyzed for the presence of implants. The following were evaluated for each implant: location, position, angulation and distances to adjacent structures, using the Clínicalview® program (Orthopantomograph OP200D, Instrumentarium, USA). Results: The frequency of radiographs with implants was 5.43% with a total of 1,791 implants, with an average of 3.2 per radiograph. They were found in greater proportion in the upper jaw with a supracrestal location and an angulation of 10.3 degrees. 32% had implant/tooth or implant/implant distances that were less than optimal. 40.9% were restored and 1.2% showed lesions compatible with periimplantitis. Conclusions: A high percentage of the implants reviewed have a risk factor that affects their long-term viability, either due to angulation, supracrestal or crestal position, proximity to teeth or other implants, or because they are not restorable.
Imaging technology plays a key role in guiding endovascular treatment of aortic aneurysm, especially in the complex thoracoabdominal aorta. The combination of high quality images with a sterile and functional environment in the surgical suite can reduce contrast and radiation exposure for both patient and operator, in addition to better outcomes. This presentation aims to describe the current use of this technique, combining angiotomography and intraoperative cone beam computed tomography, image “fusion” and intravascular ultrasound, to guide procedures and thus improve the intraoperative success rate and reduce the need for reoperation. On the other hand, a procedure is described to create customized 3D templates with the high-definition images of the patient’s arterial anatomy, which serve as specific guides for making fenestrated stents in the operating room. These customized fenestration templates could expand the number of patients with complex aneurysms treated minimally invasively.
Based on the characteristics of liquid lens sparse aperture imaging, a radiative multiplet array structure is proposed; a simplified model of sparse aperture imaging is given, and the analytical expression of the modulation transfer function is derived from the optical pupil function of the multiplet array structure; the specific distribution form of this multiplet array structure is given, and the structure parameters are approximated by the dimensionless method; the two types of radiative multiplet array structures are discussed, and the filling factor, redundancy, modulation transfer function and other characteristic parameters are calculated. The physical phenomena exhibited by the parametric scan are discussed, and the structural features and imaging characteristics of these two arrays are compared. The results show that the type-II structure with larger actual equivalent aperture and actual cutoff frequency and lower redundancy is selected when the average modulation transfer function and the IF characteristics of the modulation transfer function of the two structures are close to each other; the type-II structure has certain advantages in imaging; the conclusion is suitable for arbitrary enclosing circle size because the liquid lens-based multiplet array structure adopts dimensionless approximation parameters; compared with the composite toroidal structure, the radiative multiplet mirror structure has a larger actual cut-off frequency and actual equivalent aperture when the filling factor is the same.
A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.
Nanotechnology is a subject that studies, processes, and applies various functional materials, equipment, and systems, and controls substances on a nanoscale. Nanomedicine refers to its application in diagnosing, treating, preventing, and monitoring various diseases. Drugs administered through eye drops must travel a long distance to avoid various eye barriers reaching the posterior segment of the eye, to achieve the lowest drug level. This review focuses on nanotechnology-based eye disease treatment systems and highlights the obstacles affecting the drug management of eyes and nano-systems for the treatment of eye diseases. This paper summarizes the development prospect of nanotechnology and the challenges it faces in the treatment and diagnosis of ophthalmic diseases, to provide information and new ideas for the implementation of treatment and the development of a refractory eye disease management system.
Copyright © by EnPress Publisher. All rights reserved.