An experiment was carried out to investigate the effect of different organic nutrient solutions and day of harvest on growth parameters, biomass and chemical composition of hydroponically grown sorghum red fodder. The experiment was a 3 × 2 factorial design comprising of 3 nutrient solutions (cattle, poultry and rabbit) and 2 harvesting regimes (8th and 10th day). Cattle, poultry and rabbit dungs were collected fresh and processed into nutrient solutions. Sorghum red seeds were treated, planted on trays, and irrigated twice per day with organic nutrient solution according to the treatments. Growth parameters which were investigated included fodder mat thickness, seedling height, leaf length and width, number of leaves, fresh and dry matter yield; and proximate composition. The results showed that sorghum red fodder irrigated with cattle manure nutrient solution (NS) harvested at 10 days was higher in all, except one (fodder mat thickness) of the growth parameters considered. The crude protein (CP) was highest and similar (P > 0.05) for Poultry NS harvested at 8 and 10 days, and Cattle NS at 10 days (13.13%, 12.67%, and 12.69% respectively). The ash content also favored Cattle NS at 10 days. Cattle NS at 10 days harvest was significantly (P < 0.05) the highest (7.00%), but comparable (P > 0.05) with Rabbit NS at 10 days for NDF. Fresh and DM yields were highest for Cattle harvested at 10 and 8 days respectively. The study recommends Cattle NS as hydroponic organic NS for sorghum red as it enhances fresh and dry matter yields, and nutritive values.
The main long-term goal of international communities is to achieve sustainable development. This issue is currently highly topical in most European Union (EU) countries due to the ongoing energy crisis. Building Integrated Photovoltaics (BIPV), which can be integrated into the building surface (roof or facade), thereby replacing conventional building materials, contributes significantly to achieving zero net energy buildings. However, fire safety is important when using BIPV as a structural system in buildings, and it is essential that the application of BIPV as building facades and roofs does not adversely affect the safety of the buildings, their occupants, or the responding firefighters. As multifunctional products, BIPV modules must meet fire safety requirements in the field of electrical engineering as well as in the construction industry. In terms of building regulations, the fire safety requirements of the BIPV must comply with national building regulations. Within this article, aspects and fire hazards associated with BIPV system installations will be defined, including proposals for installation and material requirements that can help meet fire safety.
Water splitting has been one of the potential techniques as a clean and renewable energy resource for the fulfillment of world energy demands. One of the major aspects of this procedure is the exploitation of efficient and inexpensive electrocatalysts due to the fact that the water oxidation procedure is accompanied by a delayed reaction. In this research, ZnO-CoFe2O4 nanostructure was successfully synthesized via the green method and green resources from cardamom seeds and ginger peels for oxygen evolution reaction (OER). The modified Glassy carbon electrode (GCE) with ZnO-CoFe2O4 is effective for the electrochemical water oxidation interaction since it has sufficient electrical strength and excellent catalytic performance. The creation of rice-like and small granular structures of ZnO-CoFe2O4 nano-catalysts was confirmed by characterization methods such as XRD, FESEM, EDS and MAP. According to the achieved results, in the electrolysis of water, with in-cell voltage of 1.40 V and 50 mA cm–2 for current density in a 0.1 M KOH electrolyte and OER only has 170 mV overpotentials.
Strengthening the integration of elementary school mental health education and moral education is of great significance in comprehensively cultivating students' ideological and moral qualities as well as values. In order to fully implement quality education, schools need to carry out diversified teaching in conjunction with family forces to further optimize the integration effect of elementary school mental health education and moral education, cultivate high-quality talents for the country and society, and contribute to the construction of socialism with Chinese characteristics in the new era. This paper discusses the integration strategy of elementary school mental health education and moral education.
Poly(methyl methacrylate) (PMMA) is a versatile and widely used polymer that has gained significant attention in various industries due to its unique combination of properties and ease of processing. PMMA, also known as acrylic or plexiglass, is a transparent thermoplastic with exceptional optical clarity, high-impact resistance, and excellent weatherability. This scholarly article endeavors to offer an exhaustive examination of the composition, characteristics, and broad utilization of poly(methyl methacrylate) (PMMA). This study aims to conduct an in-depth analysis of the molecular composition and chemical attributes inherent to PMMA. Furthermore, it intends to examine the mechanical and physical attributes exhibited by PMMA meticulously. Additionally, an exploration of varied methodologies employed in the processing and fabrication of PMMA will be undertaken. The extensive array of applications of PMMA spanning multiple industries will be underscored, followed by a comprehensive discourse on its merits, constraints, contemporary advancements, and prospective avenues. Understanding the properties and applications of PMMA is crucial for engineers, scientists, and professionals working in fields such as automotive, aerospace, medical, and signage, where PMMA finds extensive use.
In this paper, we deal with one of the most urgent and relevant topics nowadays, i.e., water pollution. The problem is finding a valid candidate for the absorption and removal of different kinds of pollutants commonly found in water. There are already some indications about graphene oxide as a potential candidate. In the present work, we take a step forward to show how graphene nanoplatelets (rather than the oxide form of this material) are capable of decontaminating water. In this starting step, we use a specific substance as a model pollutant, i.e., acetonitrile, leaving for the future steps, to extend the analysis to additional types of pollutants. In addition to laboratory-produced graphene nanoplatelets, we already examined in the past; now we wish to consider also commercially available ones, so that the new results will not be bound to a laboratory (low technology readiness level) material, but will become interesting also from the industrial point of view, thanks to the scalability of the nanoplatelets production. For this aim, we compare the performance of two types of filters based on two classes of nanomaterials, i.e., those produced by microwave and ultrasound assisted exfoliation, already analyzed in our earlier works, with those commercially distributed by an Italian company, i.e., NANESA, http://www.nanesa.com/. The latter is an innovative SME involved in the production of graphene-based nanomaterials. We focus here in the graphene nanoplatelets, commercially available in industrial batches (GXNan grades). The present study leads to determine which filtering membrane, among the various types of commercial graphene considered, shows the greatest stability, and the lack of breakage of the membrane, concentrating on such accessory features, given that all types of graphene showed excellent adsorption properties.
Copyright © by EnPress Publisher. All rights reserved.