Phytomediation is an environmentally friendly green rehabilitation technology that is often incorporated with an application to improve calcium peroxide and phytohormones required for the growth of agricultural plants with the expectation to improve the effectiveness of plant rehabilitation. This study mainly consists of two parts: (1) water culture experiment and (2) pot culture experiment. In the water culture experiment, we attempt to understand the influence of the addition of calcium peroxide, phytohormones (IAA and GA3) and a chelating agent on the growth of sunflower plants. However, in the pot culture experiment, when hormones and the chelating agent EDTA are introduced to different plant groups at the same time, if the nutrition in the water required by plants is not available, the addition of the hormone cannot negate the toxicity caused by EDTA. In terms of calcium peroxide, due to quick release of oxygen in water, this study fails to apply calcium peroxide to the water culture experiment.
When the pot culture experiment is used to examine the influence of hormones at different concentration levels on the growth of sunflowers, GA3 10-8 M is reported to have the optimal effectiveness, followed by IAA 10-8 M; IAA 10-12 M has the lowest effectiveness. According to an accumulation analysis of heavy metals at different levels, GA3 concentrates in leaves to transport nutrition in soil to leaves. This results in an excellent TF value of 2.329G of GA3 than 1.845 of the control group indicating that the addition of the hormone and chelating agent to GA3 increases the TF value and the chelating agent is beneficial to the sunflower plant. If we examine phytoattenuation ability, the one-month experiment was divided into three stages for ten days each. The concentration level of heavy metals in the soil at each stage dropped continuously while that of the control group decreased from 31.63 mg/kg to 23.96 mg/kg, GA3 from 32.09 mg/kg to 23.04 mg/kg and EDTA from 30.65 mg/kg to 25.93 mg/kg indicating the quickest growth period of the sunflowers from the formation of the bud to blossom. During the stage, the quick upward transportation of nutrition results in quick accumulation of heavy metals; the accumulated speed of heavy metals is found higher than that of directly planted plants. This study shows an improvement in the effectiveness of the addition of hormones on plant extraction and when rehabilitation is incorporated with sunflowers with the beginning bud formation, better treatment effectiveness can be reached.
This work aimed to evaluate the effects of using three different substrates in the semi-hydroponic culture of lettuce (Lactuca sativa L.) using two different nutrient solutions. A first trial was performed with a nutrient solution rich in macronutrients and micronutrients suitable for lettuce culture, and a second trial with a nutrient solution with pretreated wastewater from effluents of a cheese factory. The experimental design was in randomized blocks with three repetitions and three substrates were used: perlite, coconut fiber, and expanded clay, in both trials. The following parameters were observed: number of leaves, diameter of the cabbage, fresh and dry weight of the aerial part, chlorophyll index and mineral composition of the lettuce. For the first trial, the highest result for the number of leaves (20 leaves), fresh weight (142.0 g) and dry weight (7.2 g) of the aerial part was obtained in the plants growing on perlite. In the second trial, the highest result for the number of leaves (28 leaves), diameter of cabbage (26.7 cm), fresh weight (118.8 g) and dry weight (9.5 g) of the aerial part were achieved by the plants that were grown in coconut fiber. The nutrient solutions were analyzed after each irrigation cycle to verify the possibility of their discharge into the environment. Several parameters were analyzed: pH, conductivity, redox potential, nitrates, nitrites, ammoniacal nitrogen, chlorides, hardness, calcium, phosphates, sodium, potassium, chemical oxygen demand (COD) and magnesium. Ammoniacal nitrogen was found to be the only nutrient that can limits the discharge of nutrient solutions into the environment. It was also proven that the plants, besides obtaining the nutrients necessary for their development in the semi-hydroponic system with the nutrient solution with pre-treated residual water, also functioned as a purification system, allowing the said nutrient solution to be discharged into the environment at the end of each cycle.
This work presents the results of the continuity of the research process carried out in the Energy Studies Center belonging to the Faculty of Technical Sciences of the University of Matanzas, which involves the establishment of a dimensionless model to determine the average condensation heat transfer coefficient of Air Coleed Condenser (ACC) systems in straight and inclined tubes. The research consists in obtaining in an analytical way the solution of the differential equation of the velocity profile, considering that condensation is of pellicular type, finally the empirical condition of Roshenow is combined with the theoretical solution to generate a numerical expression that allows obtaining with a 15.2% of deviation in 2,192 tests, a value of the average coefficient of heat transfer by condensation very similar to the one obtained with the use of the most referenced model in the consulted literature, the empirical model of Chato.
No less than 60% of timber production in Peru’s natural forests is the result of informal or illegal extractive activities that, by definition, are not sustainable. This article aims to demonstrate that even legitimate timber, such as timber harvested in more than 6 million hectares of forest concessions, does not meet the basic requirements of sustainable forest management. Forestry legislation itself, which does not emphasize forest management, institutional weaknesses and the socioeconomic environment are the main causes. In addition, the cutting cycles and the authorized minimum diameters, among other practices, do not allow the renewal of the resource and increase its degradation.
There is a large literature on public-private-partnership, covering many different areas and aspects. This article deals with a specific but important aspect: the decision-making mechanisms to choose the management of PPP enterprises. In this sector, a suitable choice of managers is of particular importance because the persons chosen must balance the public and private interests. This is often difficult to achieve. Two new procedures are discussed, “Directed Random Choice” and “Rotating CEOs”. In each case, the advantages and disadvantages of the procedure of choosing the managers of PPP enterprises are discussed and evaluated. It is concluded that the two novel mechanisms should be seriously considered when choosing the managers of PPP enterprises.
Major spices crops such as black pepper (Piper nigrum L.), cardamom (Elettaria cardamomum Maton.) and turmeric (Curcuma longa L.) production in India, is sustained losses due to several reasons. Among them, one of the major constraints are nematode infesting diseases, which causes significant yield losses and affecting their productivity. The major nematode pests infesting these crops include burrowing nematode Radopholus similis; root knot nematode, Meloidogyne incognita and M. javanica on black pepper. Whereas, lesion nematode, Pratylenchus sp., M. incognita and R. similis infesting cardamom and turmeric crops. Black pepper is susceptible to a number of diseases of which slow decline caused by R. similis and M. incognita or Phytophthora capsici either alone and in combination and root knot disease caused by Meloidogyne spp. are the major ones. Root knot disease caused by Meloidogyne spp. is major constraints in the successful cultivation and production in cardamom. Turmeric is susceptible to a number of diseases such as brown rot disease is caused by Fusarium sp. and lesion nematode, Pratylenchus sp. and root knot disease caused by M. incognita. Adoption of integrated pest management schedules is important in these crops since excessive use of pesticides could lead to pesticide residues in the produce affecting human health and also causing other ecological hazards.
Copyright © by EnPress Publisher. All rights reserved.