Recent research efforts have increasingly concentrated on creating innovative biomaterials to improve bone tissue engineering techniques. Among these, hybrid nanomaterials stand out as a promising category of biomaterials. In this study, we present a straightforward, cost-efficient, and optimized hydrothermal synthesis method to produce high-purity Ta-doped potassium titanate nanofibers. Morphological characterizations revealed that Ta-doping maintained the native crystal structure of potassium titanate, highlighting its exciting potential in bone tissue engineering.
Iran has one of the oldest civilizations in the world, and many elements of today’s urban planning and design have their origins in the country. However, mass country-city migration from the 1960s onwards brought enormous challenges for the country’s main cities in the provision of adequate housing and associated services, resulting in a range of sub-standard housing solutions, particularly in Tehran, the capital city. At the same time, and notably in the past decade, Iran’s main cities have had significant involvement in the smart city movement. The Smart Tehran Program is currently underway, attempting to transition the capital towards a smart city by 2025. This study adopts a qualitative, inductive approach based on secondary sources and interview evidence to explore the current housing problems in Tehran and their relationship with the Smart Tehran Program. It explores how housing has evolved in Tehran and identifies key aspects of the current provision, and then assesses the main components of the Smart Tehran Program and their potential contribution to remedying the housing problems in the city. The article concludes that although housing related issues are at least being raised via the new smart city technology infrastructure, any meaningful change in housing provision is hampered by the over centralized and bureaucratic political system, an out of date planning process, lack of integration of planning and housing initiatives, and the limited scope for real citizen participation.
Introduction: It is universally accepted that the posteroanterior skull radiograph shows a lower degree of distortion than other radiographic images, so that measurements on it are considered reliable. Objective: To determine the percentage of distortion in the different facial regions of the postero-anterior skull radiograph. Methods: Thirty human skulls with their jaws were divided by three horizontal and four vertical planes into fifteen quadrants; there were ten in the skull and five in the jaw. On each of them a steel wire was placed in vertical and horizontal positions and their length (actual measurement) was measured. Each set was X-rayed in posteroanterior projection and the length of the wires was measured in the image (radiographic measurement). Results: It was not possible to measure in the lateral quadrants of the skull. The horizontal measurement in the right and left lower intermediate quadrants of the skull and in the intermediate and lateral quadrants of both sides of the mandible is not reliable; in the median quadrant of the mandible it is minimized; in the right and left upper intermediate and median quadrants of the skull and in the median of the mandible it is magnified. Vertical measurements in all quadrants are reliable; in the right and left upper intermediate and left upper and middle quadrants of the skull and in the right and left middle and lateral quadrants of the mandible it is magnified; in the lower intermediate and upper and lower middle quadrants of the skull and median of the mandible it is minimized. The least distortion for both measurements occurs in the upper median quadrant of the skull. Percentages of distortion are reported for each quadrant. Conclusions: Distortion is present in the posteroanterior skull radiograph and varies from one region of the face to another.
In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
This study examined the impact of aluminium doping on the structural, electrical, and magnetic properties of Li(0.5)Co(0.75)AlxFe(2−x)O4 spinel ferrites (x =0.15 to 0.60). The samples were synthesised using the sol-gel auto-combustion technique, and they were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), dielectric measurements, and vibrating sample magnetometry (VSM). All samples possessed a single-phase cubic spinel structure with Fd-3m space group, according to XRD analyses. SEM images showed the creation of homogeneous particles with an average size of about 21 nm. All samples had spinel ferrite phases, confirmed from FTIR spectra. DC electrical conductivity studies showed that the conductivity increased with increasing aluminium content up to x = 0.45 before dropping at x = 0.60. The maximum saturation magnetization value was found at x = 0.45, according to VSM measurements, which demonstrated that the magnetic characteristics were strongly correlated with the amount of aluminium.
Copyright © by EnPress Publisher. All rights reserved.