Endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) is an off-patent insecticide used in agricultural farms. Its usage as a pesticide has become highly controversial over the last few decades. This is due to its reported hazardous nature to health and side effects like growth retardation, hydrocephalus, and undesired changes in the male and female hormones leading to complications in sexual maturity. Endosulfan is the main culprit among all pesticide poisoning incidents around the world. Though the usage of this dreaded pesticide is banned by most countries, the high stability of this molecule to withstand degradation for a long period poses a threat to mankind even today. So, it has become highly essential to detect the presence of this poisonous pesticide in the drinking water and milk around these places. It is also advisable to check the presence of this toxic material in the blood of the population living in and around these places so that an early and appropriate management strategy can be adopted. With this aim, we have developed a sensor for endosulfan that displayed high selectivity and sensitivity among all other common analytes in water and biological samples, with a wide linear concentration range (2 fM to 2 mM), a low detection limit (2 fM), and rapid response. A citrate-functionalized cadmium-selenium quantum dot was used for this purpose, which showed a concentration-dependent fluorescence enhancement, enabling easy and sensitive sensing. This sensor was utilized to detect endosulfan in different sources of water, human blood serum, and milk samples with good recoveries. It is also noted that the quantum dot forms a stable complex with endosulfan and is easy to separate from the contaminated source, paving the way for purifying the contaminated water. More detailed tests and validation of the sensor are needed to confirm these observations.
The Oued Kert watershed in Morocco is essential for local biodiversity and agriculture, yet it faces significant challenges due to meteorological drought. This research addresses an urgent issue by aiming to understand the impacts of drought on vegetation, which is crucial for food security and water resource management. Despite previous studies on drought, there are significant gaps, including a lack of specific analyses on the seasonal effects of drought on vegetation in this under-researched region, as well as insufficient use of appropriate analytical tools to evaluate these relationships. We utilized the Standardized Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to analyze the relationship between precipitation and vegetation health. Our results reveal a very strong correlation between SPI and NDVI in spring (98%) and summer (97%), while correlations in winter and autumn are weaker (66% and 55%). These findings can guide policymakers in developing appropriate strategies and contribute to crop planning and land management. Furthermore, this study could serve as a foundation for awareness and education initiatives on the sustainable management of water and land resources, thereby enhancing the resilience of local ecosystems in the face of environmental challenges.
In order to optimize the environmental factors for cucumber growth, a fertilizer and water control system was designed based on the Internet of Things (IoT) system. The IoT system monitors environmental factors such as temperature, light and soil Ec value, and uses image processing to obtain four growth indicators such as cucumber stem height, stem diameter size, number of leaves and number of fruit set to establish a single growth indicator model for temperature, light, soil Ec value and growth stage, and the four growth indicators were fused to obtain the comprehensive growth indicator Ic for cucumber, and calculates its deviation to determine the cucumber growth status. Based on the integrated growth index Ic of cucumber, a soil Ec control model was established to provide the optimal environment and fertilizer ration for cucumber at different growth stages to achieve stable and high yield of cucumber.
The paper at hand analyses the principal-agent relationship, where comparative perspective between principals’ (municipalities) and agents’ (public utility providers) in the field of water and wastewater management is scrutinized. The goal of the paper is twofold: firstly, to present empirical results validating principal-agent relationships that emerged due to the reorganization process of public enterprises; secondly, to highlight the similarities and differences between the perspectives of principals and agents regarding motives, advantages and disadvantages, and price-setting in relation to the reorganization process. The empirical research is based on the primary data collected through two self-prepared and structured online questionnaires—one for municipalities, and the other for public utility providers. The results reveal similarities between public enterprises and municipalities in motivating factors for full municipal ownership. However, differences are seen among the advantages of the reorganization process. Price-setting by public utilities is recognized as a motivating mechanism for agents.
Tropical peat swamp is an essential ecosystem experiencing increased degradation over the past few decades. Therefore, this study used the social-ecological system (SES) perspective to explain the complex relationship between humans and nature in the Sumatran Peatlands Biosphere Reserve. The peat swamp forest has experienced a significant decline, followed by a significant increase in oil palm and forest plantations in areas designated for peat protection. Human systems have evolved to become complex and hierarchical, constituting individuals, groups, organizations, and institutions. Studies on SES conducted in the tropical peatlands of Asia have yet to address the co-evolutionary processes occurring in this region, which could illustrate the dynamic relationship between humans and nature. This study highlights the co-evolutionary processes occurring in the tropical peatland biosphere reserve and provides insights into their sustainability trajectory. Moreover, the coevolution process shows that biosphere reserve is shifting toward an unsustainable path. This is indicated by ongoing degradation in three zones and a lack of a comprehensive framework for landscape-scale water management. Implementing landscape-scale water management is essential to sustain the capacity of peatlands social-ecological systems facing disturbances, and it is important to maintain biodiversity. In addition, exploring alternative development pathways can help alter these trajectories toward sustainability.
Copyright © by EnPress Publisher. All rights reserved.