Public-private partnerships (PPPs) are vital for infrastructure development in developing countries, integrating private efficiency with public oversight. However, PPP models often face risks, particularly in Indonesia’s water sector, due to its unique geographical and regulatory challenges. This study aims to identify and evaluate risk factors specific to drinking water PPP projects in Indonesia. Using a quantitative approach, structured questionnaires were distributed to experts in the sector, and the data was analyzed using a fuzzy evaluation method. Risks were categorized into location, design and construction, financial, operational, revenue, and political. The study emphasizes that effective risk management, including identification, analysis, and mitigation, is essential for project success. It highlights the importance of stakeholder involvement and flexible risk management strategies. Comprehensive and proactive risk management is key to the success of drinking water infrastructure projects. The research suggests that an integrated and collaborative approach among stakeholders can enhance risk management effectiveness. These findings provide valuable insights for policymakers, project managers, investors, and other stakeholders, underscoring the necessity for adaptable regulatory frameworks and robust policy guidelines to improve the sustainability and efficacy of future water-related PPPs.
This paper presents a coupling of the Monte Carlo method with computational fluid dynamics (CFD) to analyze the flow channel design of an irradiated target through numerical simulations. A novel series flow channel configuration is proposed, which effectively facilitates the removal of heat generated by high-power irradiation from the target without necessitating an increase in the cooling water flow rate. The research assesses the performance of both parallel and serial cooling channels within the target, revealing that, when subjected to equivalent cooling water flow rates, the maximum temperature observed in the target employing the serial channel configuration is lower. This reduction in temperature is ascribed to the accelerated flow of cooling water within the serial channel, which subsequently elevates both the Reynolds number and the Nusselt number, leading to enhanced heat transfer efficiency. Furthermore, the maximum temperature is observed to occur further downstream, thereby circumventing areas of peak heat generation. This phenomenon arises because the cooling water traverses the target plates with the highest internal heat generation at a lower temperature when the flow channels are arranged in series, optimizing the cooling effect on these targets. However, it is crucial to note that the pressure loss associated with the serial structure is two orders of magnitude greater than that of the parallel structure, necessitating increased pump power and imposing stricter requirements on the target container and cooling water pipeline. These findings can serve as a reference for the design of the cooling channels in the target station system, particularly in light of the anticipated increase in beam power during the second phase of the China Spallation Neutron Source (CSNS Ⅱ).
Freshwater problems in coastal areas include the process of salt intrusion which occurs due to decreasing groundwater levels below sea level which can cause an increase in salt levels in groundwater so that the water cannot be used for water purposes, human consumption and agricultural needs. The main objective of this research is to implementation of RWH to fulfill clean water needs in tropical coastal area in Tanah Merah Village, Indragiri Hilir Regency, with the aim of providing clean water to coastal communities. The approach method used based on fuzzy logic (FL). The model input data includes the effective area of the house’s roof, annual rainfall, roof runoff coefficient, and water consumption based on the number of families. The BWS III Sumatera provided the rainfall data for this research, which was collected from the Keritang rainfall monitoring station during 2015 and 2021. The research findings show that FL based on household scale RWH technology is used to supply clean water in tropical coastal areas that the largest rainwater contribution for the 144 m2 house type for the number of residents in a house of four people with a tank capacity of 29 m2 is 99.45%.
In recent decades, the redevelopment of waterfronts in global cities has become a focal point for large-scale real estate investments, often driven by neoliberal policies. These projects, characterized by the increasing involvement of state agencies, aim to transform obsolete industrial areas into lucrative spaces for tourism, commerce, and luxury living. This article scrutinizes the intricate dynamics of state-led waterfront re-development, through the lens of Istanbul’s Galataport project. It analyzes the multifaceted dimensions of the transformation process, shedding light on the historical backdrop, socio-political underpinnings, and economic imperatives that have shaped the development of Galataport from 2002 to 2022. Through a comprehensive analysis of primary sources, including governmental reports, policy documents, and scholarly literature, the article accentuates the pivotal role of the state and state actors in orchestrating the transformation of Istanbul’s urban landscape. Furthermore, it examines the implications of the Galataport project on urban governance and socio-cultural and spatial dynamics. It concludes that the central government pursued a speculative entrepreneurial approach in the Galataport project, clearing various legal obstacles while neglecting public interest. This case study takes the first step towards a comprehensive critical re-evaluation of the recent urban development/governance model to contribute to a nuanced understanding of contemporary urban/waterfront development paradigms in Türkiye and similar geographies.
Constructed wetlands have emerged as a sustainable alternative for decentralized wastewater treatment in developing countries which face challenges with urbanization and deteriorating infrastructure. This paper discusses the key factors affecting the implementation of constructed wetlands in developing countries. A case study research design was adopted, which focused on Bulawayo, Zimbabwe. A mixed-method approach was adopted for the study. Spatial analysis was conducted to identify potential sites for constructed wetlands in the city of Bulawayo. Semi structured interviews were conducted, with relevant stakeholders, such as town planners, civil engineers, NGO representatives, community leaders, and quantity surveyors. The findings reveal that political reforms, public acceptance, land availability, and funding are crucial for the successful implementation of constructed wetlands. Additionally, four sites were identified as the most favorable preliminary locations for these systems. The paper captures all the key factors relevant to the implementation of constructed wetlands (CWs) with a closer look at policy and the role it plays in the adoption of decentralized wastewater treatment systems. Formulating policy around the decentralized sanitation systems was considered imperative to the success of the systems whether in implementation or in operation. The paper adds to knowledge in the subject of sustainable wastewater treatment alternatives for developing countries. However, further research can be conducted with a different methodology to ascertain the applicability of the systems in developing urban cities considering other important aspects in the implementation of wastewater treatment systems.
Water splitting has gained significant attention as a means to produce clean and sustainable hydrogen fuel through the electrochemical or photoelectrochemical decomposition of water. Efficient and cost-effective water splitting requires the development of highly active and stable catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Carbon nanomaterials, including carbon nanotubes, graphene, and carbon nanofibers, etc., have emerged as promising candidates for catalyzing these reactions due to their unique properties, such as high surface area, excellent electrical conductivity, and chemical stability. This review article provides an overview of recent advancements in the utilization of carbon nanomaterials as catalysts or catalyst supports for the OER and HER in water splitting. It discusses various strategies employed to enhance the catalytic activity and stability of carbon nanomaterials, such as surface functionalization, hybridization with other active materials, and optimization of nanostructure and morphology. The influence of carbon nanomaterial properties, such as defect density, doping, and surface chemistry, on electrochemical performance is also explored. Furthermore, the article highlights the challenges and opportunities in the field, including scalability, long-term stability, and integration of carbon nanomaterials into practical water splitting devices. Overall, carbon nanomaterials show great potential for advancing the field of water splitting and enabling the realization of efficient and sustainable hydrogen production.
Copyright © by EnPress Publisher. All rights reserved.