Wei J, Chen H, Chen Y, et al. China Spallation Neutron Source: Design, R&D, and outlook. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009; 600(1): 10-13. doi: 10.1016/j.nima.2008.11.017
Chen Y. China Spallation Neutron Source (CSNS). Bulletin of Chinese Academy of Sciences. 2011; 26(6): 726-728.
Wang F, Liang T, Yin W, et al. Conceptual design of target station and neutron scattering spectrometers for the Chinese spallation neutron source. Nuclear techniques. 2005; 8: 593-597. doi: 10.3321/j.issn:0253-3219.2005.08.006
Haines JR, McManamy TJ, Gabriel TA, et al. Spallation neutron source target station design, development, and commissioning. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2014; 764: 94-115. doi: 10.1016/j.nima.2014.03.068
Ikeda Y. Scientific Reviews: 1-MW Pulse Sapllation Neutron Source (JSNS) of J-PARC. Neutron News. 2005; 16(1): 20-24. doi: 10.1080/10448630500454189
Bauer GS, Salvatores M, Heusener G. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target. Journal of Nuclear Materials. 2001; 296(1): 17-33. doi: 10.1016/S0022-3115(01)00561-X
Aguilar A, Sordo F, Mora T, et al. Design specification for the European Spallation Source neutron generating target element. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017; 856: 99-108. doi: 10.1016/j.nima.2017.03.003
Burns GJ, Dey A, Findlay DJS, et al. Erosion of neutron-producing targets at ISIS spallation neutron source. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2022; 521: 7-16. doi: 10.1016/j.nimb.2022.04.004
Wei S, Zhang R, Shi Y, et al. Development of CSNS Target. Atomic Energy Science and Technology. 2019; 53(12): 2441-2446. doi: 10.7538/yzk.2018.youxian.0885
Futakawa M, Kogawa H, Hino R, et al. Erosion damage on solid boundaries in contact with liquid metals by impulsive pressure injection. International Journal of Impact Engineering. 2003; 28(2): 123-135. doi: 10.1016/S0734-743X(02)00054-4
Park JJ, Butt DP, Beard CA. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead-bismuth eutectic spallation targets as a neutron source. Nuclear Engineering and Design. 2000; 196(3): 315-325. doi: 10.1016/S0029-5493(99)00303-9
Hao J, Chen Q, Lu Y, et al. Thermal Design of a Spallation Neutron Source Target System. Journal of Engineering Thermophysics. 2013; 34: 1515-1518.
Hao J, Chen Q, Xu Y, et al. Flow field optimization and design for a Spallation Neutron Source target cooling system. Science China Technological Sciences. 2013; 56(6): 1370-1376. doi: 10.1007/s11431-013-5215-4
Lu Y, Tong J, Wang S, et al. The influence of proton beam offset on CSNS target heat transfer performance. In: Proceedings for the 14th National Conference on Reactor Thermalhydraulics; 23 September 2015; Beijing, China.
Takenaka N, Nio D, Kiyanagi Y, et al. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source. Journal of Nuclear Materials. 2005; 343(1-3): 169-177. doi: 10.1016/j.jnucmat.2004.11.017
Bauer GS. Overview on spallation target design concepts and related materials issues. Journal of Nuclear Materials. 2010; 398(1-3): 19-27. doi: 10.1016/j.jnucmat.2009.10.005
Li Y, Roux S, Castelain C, et al. Tailoring the fluid flow distribution in a parallel mini-channel heat sink under multiple-peak heat flux. Thermal Science and Engineering Progress. 2022; 29: 101182. doi: 10.1016/j.tsep.2021.101182
Kumar S, Singh PK. A novel approach to manage temperature non-uniformity in minichannel heat sink by using intentional flow maldistribution. Applied Thermal Engineering. 2019; 163: 114403. doi: 10.1016/j.applthermaleng.2019.114403