A significant percentage of any nation’s economy comes from the building industry, and its performance can impact overall economic growth and development. This paper aims to identify the similarities and differences between the construction sector (CS) of developed and developing economies in terms of size, growth, and contribution to the Gross domestic product (GDP) to understand the similarities and variances in the CS dynamics, trends, and challenges, and to inform policy decisions and investments through the literature review. The study also explores the factors that affect the CS’s performance in both types of economies, such as government policies, market conditions, and technological advancements. This paper concludes that the CS in developed economies is more established and technologically advanced, but there is still significant room for growth in developing economies. Moreover, a framework is proposed that could assist developing nations in opting for the construction economy. Further, the review emphasizes the significance of government policies and investments in infrastructure development to stimulate the CS’s growth and support overall economic development. The results of the study will assist in enhancing understanding of the CS’s potential in both developed and developing economies and support decision-making for policymakers, industry practitioners, and academicians.
The present study demonstrates the effect of direct solar drying (DSD) and hot air drying (HAD) on the quality attributes of Fuji apple slices. DSD samples took a longer time (150–180 min) to dry and simultaneously reached higher equilibrium moisture content at the end of rehydration than HAD samples. DSD samples have higher rehydration ability, dry matter holding capacity, and water absorption capacity than HAD samples. Among several empirical models, the Weibull model is the best fit with higher R2 (0.9977), lower root mean square (0.0029), and chi-square error (0.0031) for describing the rehydration kinetics. Rehydrated HAD samples showed better color characteristics than DSD in terms of overall color change, chroma, and hue angle values. Whereas the hardness and chewiness of rehydrated DSD samples were better than HAD samples because of higher dry matter holding capacity in DSD. Apart from color retention, the DSD samples showed better rehydration capacity and a good texture upon rehydration than HAD slices.
The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors.
In order to explore the application of the new integrated intelligent spore capture system developed in China in the prediction of cucumber downy mildew and cucumber powdery mildew, the main working parameters of the integrated intelligent spore capture system, such as the presence or absence of air cutting head, the height of air collection port and the time of air collection, were optimized by identifying the morphology of captured spores in the case of natural disease in the field. The relationship between the disease index of cucumber downy mildew and cucumber powdery mildew in greenhouse and the amount of spores captured was analyzed through the dynamic monitoring of disease and spores. The results show that when the air cutting head is not installed, the height of the air collection port is 70 cm, and the period of 10: 00–10: 30 was beneficial to the capture of spores. The disease index of cucumber downy mildew and cucumber powdery mildew had a strong positive correlation with the total amount of spores captured for 7 consecutive days. Continuous monitoring of cucumber downy mildew sporangia and rapid increase in the number is a predictor of the occurrence or rapid increase of cucumber downy mildew. The conidia of cucumber powdery mildew were not detected before the disease onset, and the number of conidia captured was still small at the peak of the disease. The research shows that the integrated intelligent spore capture system is suitable for the prediction of cucumber downy mildew, but there are still some problems in the prediction of cucumber powdery mildew.
In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
This work presents the results of the continuity of the research process carried out in the Energy Studies Center belonging to the Faculty of Technical Sciences of the University of Matanzas, which involves the establishment of a dimensionless model to determine the average condensation heat transfer coefficient of Air Coleed Condenser (ACC) systems in straight and inclined tubes. The research consists in obtaining in an analytical way the solution of the differential equation of the velocity profile, considering that condensation is of pellicular type, finally the empirical condition of Roshenow is combined with the theoretical solution to generate a numerical expression that allows obtaining with a 15.2% of deviation in 2,192 tests, a value of the average coefficient of heat transfer by condensation very similar to the one obtained with the use of the most referenced model in the consulted literature, the empirical model of Chato.
Copyright © by EnPress Publisher. All rights reserved.