Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 International Mechanical Engineering Congress and Exhibition; 12–17 November 1995; San Francisco, CA, United States. pp. 99–105.
Sheikholeslami M, Soleimani S, Ganji DD. Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry. Journal of Molecular Liquids 2016; 213: 153–161. doi: 10.1016/j.molliq.2015.11.015
Hamad MAA, Pop I, Md Ismail AI. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Analysis: Real World Applications 2011; 12(3): 1338–1346. doi: 10.1016/j.nonrwa.2010.09.014
Khan Z, Srivastava HM, Mohammed PO, et al. Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation. Mathematical Biosciences and Engineering 2022; 19(12): 14116–41141. doi: 10.3934/mbe.2022658
Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications—A state-of-the-art review. International Journal of Heat and Mass Transfer 2018; 125: 82–103. doi: 10.1016/j.ijheatmasstransfer.2018.04.059
Gabli A, Kezzar M, Zighed L, et al. Simultaneous impacts of Fe3O4 particles and thermal radiation on natural convection of non-Newtonian Flow between two vertical flat plates using ADM. Journal of Non-Equilibrium Thermodynamics 2020; 45(2): 173–189. doi: 10.1515/jnet-2019-0083
Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer 2014; 52: 73–83. doi: 10.1016/j.icheatmasstransfer.2014.01.012
Momin GG. Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow. International Journal of Scientific & Technology Research 2013; 12(2): 195–202.
Bachok N, Ishak A, Pop I. Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. International Journal of Heat and Mass Transfer 2012; 55(25–26): 8122–8128. doi: 10.1016/j.ijheatmasstransfer.2012.08.051
Merkin JH, Najib N, Bachok N, et al. Stagnation-point flow and heat transfer over an exponentially stretching/shrinking cylinder. Journal of the Taiwan Institute of Chemical Engineers 2017; 74: 65–72. doi: 10.1016/j.jtice.2017.02.008
Hussain S, Ahmed SE, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. International Journal of Heat and Mass Transfer 2017; 114: 1054–1066. doi: 10.1016/j.ijheatmasstransfer.2017.06.135
Dhinesh Kumar D, Valan Arasu A. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renewable and Sustainable Energy Reviews 2018; 81: 1669–1689. doi: 10.1016/j.rser.2017.05.257
Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: A critical review. International Journal of Heat and Mass Transfer 2018; 126: 211–234. doi: 10.1016/j.ijheatmasstransfer.2018.05.021
Hemmat Esfe M, Wongwises S, Naderi A, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. International Communications in Heat and Mass Transfer 2015; 66: 100–104. doi: 10.1016/j.icheatmasstransfer.2015.05.014
Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. Journal of Thermal Analysis and Calorimetry 2017; 129(2): 859–867. doi: 10.1007/s10973-017-6213-8
Pourrajab R, Noghrehabadi A, Behbahani M, Hajidavalloo E. An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: Experimental study. Journal of Thermal Analysis and Calorimetry 2021; 143(5): 3331–3343. doi: 10.1007/s10973-020-09300-y
Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow 2008; 29(5): 1326–1336. doi: 10.1016/j.ijheatfluidflow.2008.04.009
Homann F. The need for high speed in the flow around the cylinder and around the sphere (German). Zeitschrift fur Angewandte Mathematik und Mechanik 1936; 16: 153–164. doi: 10.1002/zamm.19360160304
Weidman PD. Non-axisymmetric Homann stagnation-point flows. Journal of Fluid Mechanics 2012; 702: 460–469. doi: 10.1017/jfm.2012.197
Jawad M, Khan Z, Bonyah E, Jan R. Analysis of hybrid nanofluid stagnation point flow over a stretching surface with melting heat transfer. Mathematical Problems in Engineering 2022; 2022: 1–12. doi: 10.1155/2022/9469164
Khan Z, Jawad M, Bonyah E, et al. Magnetohydrodynamic thin film flow through a porous stretching sheet with the impact of thermal radiation and viscous dissipation. Mathematical Problems in Engineering 2022; 2022: 1–10. doi: 10.1155/2022/1086847
Borrelli A, Giantesio G, Patria MC. Numerical simulations of three-dimensional MHD stagnation-point flow of a micropolar fluid. Computers & Mathematics with Applications 2013; 66(4): 472–489. doi: 10.1016/j.camwa.2013.05.023
Grosan T, Pop I, Revnic C, Ingham DB. Magnetohydrodynamic oblique stagnation-point flow. Meccanica 2009; 44(5): 565–572. doi: 10.1007/s11012-009-9196-0
Wang CY. Stagnation flow on a plate with anisotropic slip. European Journal of Mechanics—B/Fluids 2013; 38: 73–77. doi: 10.1016/j.euromechflu.2012.10.005
Wang CY. Off-centered stagnation flow towards a rotating disc. International Journal of Engineering Science 2008; 46(4): 391–396. doi: 10.1016/j.ijengsci.2008.01.014
Wang CY. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics 2008; 43(5): 377–382. doi: 10.1016/j.ijnonlinmec.2007.12.021
Ahmed J, Shahzad A, Farooq A, et al. Radiative heat transfer in Homann stagnation-point flow of hybrid nanofluid. Applied Nanoscience 2020; 10(12): 5305–5314. doi: 10.1007/s13204-020-01464-1
Anuar NS, Bachok N, Pop I. Cu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditions. Mathematics 2020; 8(8): 1237. doi: 10.3390/math8081237
Sreekala B, Janardhan K, Ramya D, Shravani I. MHD boundary layer nanofluid flow of heat transfer over a nonlinear stretching sheet presence of thermal radiation and partial slip with suction. Global Journal of Pure and Applied Mathematics 2017; 13(9): 4927–4941.
Jawad M, Shah Z, Islam S, et al. Impact of nonlinear thermal radiation and the viscous dissipation effect on the unsteady three-dimensional rotating flow of single-wall carbon nanotubes with aqueous suspensions. Symmetry 2019; 11(2): 207. doi: 10.3390/sym11020207
Jawad M, Saeed A, Kumam P, et al. Analysis of boundary layer MHD Darcy-Forchheimer radiative nanofluid flow with Soret and Dufour effects by means of Marangoni convection. Case Studies in Thermal Engineering 2021; 23: 100792. doi: 10.1016/j.csite.2020.100792
Khashi’ie NS, Arifin NM, Rashidi MM, et al. Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium. Journal of Thermal Analysis and Calorimetry 2020; 139(6): 3635–3648. doi: 10.1007/s10973-019-08713-8
Mohd Nasir NAA, Ishak A, Pop I. Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet. Chinese Journal of Physics 2017; 55(5): 2081–2091. doi: 10.1016/j.cjph.2017.08.023
Kamal F, Zaimi K, Ishak A, Pop I. Stability analysis on the stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet with heat source effect. International Journal of Numerical Methods for Heat & Fluid Flow 2018; 28(11): 2650–2663. doi: 10.1108/HFF-01-2018-0031
Kamal F, Zaimi K, Ishak A, Pop I. Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect. Sains Malaysiana 2019; 48(1): 243–250. doi: 10.17576/jsm-2019-4801-28
Khashi’ie NS, Md Arifin N, Nazar R, et al. A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip. Energies 2019; 12(7): 1268. doi: 10.3390/en12071268
Khashi’ie NS, Arifin NM, Pop I, et al. Non-axisymmetric Homann stagnation point flow and heat transfer past a stretching/shrinking sheet using hybrid nanofluid. International Journal of Numerical Methods for Heat & Fluid Flow 2020; 30(10): 4583–4606. doi: 10.1108/hff-11-2019-0824
Khashi’ie NS, Arifin NM, Nazar R, et al. Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chinese Journal of Physics 2020; 64: 251–263. doi: 10.1016/j.cjph.2019.11.008
Srivastava HM, Khan Z, Mohammed PO, et al. Heat transfer of buoyancy and radiation on the free convection boundary layer MHD flow across a stretchable porous sheet. Energies 2022; 16(1): 58. doi: 10.3390/en16010058
Wang CY. Fluid flow due to a stretching cylinder. The Physics of Fluids 1988; 31(3): 466–468. doi: 10.1063/1.866827
Butt AS, Ali A, Mehmood A. Numerical investigation of magnetic field effects on entropy generation in viscous flow over a stretching cylinder embedded in a porous medium. Energy 2016; 99: 237–249. doi: 10.1016/j.energy.2016.01.067
Rehman KU, Al-Mdallal QM, Qaiser A, et al. Finite element examination of hydrodynamic forces in grooved channel having two partially heated circular cylinders. Case Studies in Thermal Engineering 2020; 18: 100600. doi: 10.1016/j.csite.2020.100600
Abbas Z, Rasool S, Rashidi MM. Heat transfer analysis due to an unsteady stretching/shrinking cylinder with partial slip condition and suction. Ain Shams Engineering Journal 2015; 6(3): 939–945. doi: 10.1016/j.asej.2015.01.004
Abaszadeh M, Safavinejad A, Amiri H, Amiri Delouei A. A direct-forcing IB-LBM implementation for thermal radiation in irregular geometries. Journal of Thermal Analysis and Calorimetry 2022; 147(20): 11169–11181. doi: 10.1007/s10973-022-11328-1
Abaszadeh M, Safavinejad A, Amiri Delouei A, Amiri H. Analysis of radiative heat transfer in two-dimensional irregular geometries by developed immersed boundary-lattice Boltzmann method. Journal of Quantitative Spectroscopy and Radiative Transfer 2022; 280: 108086. doi: 10.1016/j.jqsrt.2022.108086
Atashafrooz M, Sajjadi H, Amiri Delouei A. Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. Journal of Magnetism and Magnetic Materials 2023; 567: 170354. doi: 10.1016/j.jmmm.2023.170354
Al Sakkaf LY, Al-Mdallal QM, Al Khawaja U. A numerical algorithm for solving higher-order nonlinear BVPs with an application on fluid flow over a shrinking permeable infinite long cylinder. Complexity 2018; 2018: 1–11. doi: 10.1155/2018/8269541
Cunning GM, Davis AMJ, Weidman PD. Radial stagnation flow on a rotating circular cylinder with uniform transpiration. Journal of Engineering Mathematics 1998; 33(2): 113–128. doi: 10.1023/A:1004243728777
Wan Zaimi WMKA, Ishak A, Pop I. Unsteady viscous flow over a shrinking cylinder. Journal of King Saud University-Science 2013; 25(2): 143–148. doi: 10.1016/j.jksus.2012.11.005
Waini I, Ishak A, Pop I. Hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder. Scientific Reports 2020; 10(1): 9296. doi: 10.1038/s41598-020-66126-2
Devi SPA, Devi SSU. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International Journal of Nonlinear Sciences and Numerical Simulation 2016; 17(5): 249–257. doi: 10.1515/ijnsns-2016-0037
Waini I, Ishak A, Pop I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer 2019; 136: 288–297. doi: 10.1016/j.ijheatmasstransfer.2019.02.101
Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow 2008; 29(5): 1326–1336. doi: 10.1016/j.ijheatfluidflow.2008.04.009
Liao S. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems [PhD thesis]. Shanghai Jiao Tong University; 1992.
Li Y, Nohara BT, Liao S. Series solutions of coupled Van der Pol equation by means of homotopy analysis method. Journal of Mathematical Physics 2010; 51(6): 063517. doi: 10.1063/1.3445770
Liao S. A kind of approximate solution technique which does not depend upon small parameters—II. An application in fluid mechanics. International Journal of Non-Linear Mechanics 1997; 32(5): 815–822. doi: 10.1016/S0020-7462(96)00101-1
Liao S. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. Journal of Fluid Mechanics 2003; 488: 189–212. doi: 10.1017/S0022112003004865
S. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate. International Journal of Heat and Mass Transfer 2005; 48(12): 2529–2539. doi: 10.1016/j.ijheatmasstransfer.2005.01.005
Liao S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical 2010; 15(8): 2003–2016. doi: 10.1016/j.cnsns.2009.09.002
Liao S, Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Studies in Applied Mathematics 2007; 119(4): 297–354. doi: 10.1111/j.1467-9590.2007.00387.x