The article reveals the problems of the transition to a “green” economy based on sustainable technological changes, which are caused by global ecological pollution of the ecosystem, which leads to warming and ecological changes and the insufficiency of the natural resource potential to meet the needs of the population of the planet, which does not contribute to development. The essence of the study is to determine the impact of a green economy on economic growth and development, in which natural assets continue to provide resources and environmental services. It is shown that the green economy provides a practical and flexible approach to achieving concrete, measurable progress in all its economic and environmental principles, while at the same time fully taking into account the social consequences of greening the dynamics of economic growth. Green economy strategies aim to ensure that natural assets can fully realize their economic potential in a sustainable manner. This potential includes the provision of vital life support services—clean air and water, as well as the sustainable biodiversity needed to support food production and human health. Natural assets cannot be replaced indefinitely, so the policy of the green economy should take this into account. It is characterized that the green economy provides a practical and flexible approach to achieving concrete, measurable progress in all its economic and environmental principles, while at the same time fully taking into account the social consequences of greening the dynamics of economic growth. The problems of the post-war revival of Ukraine’s economy are systematized and proposals for their solution are substantiated, which is the scientific contribution of the authors to the coverage of this problem. The global problems of the transition to a green economy, which are closely related to Ukrainian realities, are revealed. The practical content is determined by the fact that the theoretical and methodological provisions, conclusions and scientific and practical recommendations constitute the scientific basis for the development of a new holistic concept of the development of the green economy of Ukraine. The conclusions that it is the “green” economy that is able to most closely link the ecological and economic aspects of the national economy, acting as a key direction for ensuring the sustainable “green” development of the region and the state as a whole, actualize the prospects of creating a green economy in Ukraine and become necessary and quite achievable in the post-war period.
Nanoscale zero-valent iron (nZVI) is thought to be the most effective remediation material for contaminated soil, especially when it comes to heavy metal pollutants. In the current high-industrial and technologically advanced period, water pollution has emerged as one of the most significant causes for concern. In this instance, silica was coated with zero-valent iron nanoparticles at 650 and 800 ℃. Ferric iron with various counter-ions, nitrate (FN) and chloride (FC), and sodium borohydride as a reducing agent were used to create nanoscale zero-valent iron in an ethanol medium with nitrogen ambient conditions. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques were employed to describe the structures of the generated zero-valent iron nanoparticles. Further, we investigated the electrical properties and adsorption characteristics of dyes such as alizarin red in an aqueous medium. As a result, zero-valent nano iron (nZVI), a core-shell environmental functional material, has found extensive application in environmental cleanup. The knowledge in this work will be useful for nZVI-related future research and real-world applications.
This review provides an overview of the importance of nanoparticles in various fields of science, their classification, synthesis, reinforcements, and applications in numerous areas of interest. Normally nanoparticles are particles having a size of 100 nm or less that would be included in the larger category of nanoparticles. Generally, these materials are either 0-D, 1-D, 2-D, or 3-D. They are classified into groups based on their composition like being organic and inorganic, shapes, and sizes. These nanomaterials are synthesized with the help of top-down bottom and bottom-up methods. In case of plant-based synthesis i.e., the synthesis using plant extracts is non-toxic, making plants the best choice for producing nanoparticles. Several physicochemical characterization techniques are available such as ultraviolet spectrophotometry, Fourier transform infrared spectroscopy, the atomic force microscopy, the scanning electron microscopy, the vibrating specimen magnetometer, the superconducting complex optical device, the energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy to investigate the nanomaterials. In the meanwhile, there are some challenges associated with the use of nanoparticles, which need to be addressed for the sustainable environment.
In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
Copyright © by EnPress Publisher. All rights reserved.