Sklyar AM, Kalinkevich OV, Holubnycha VN, et al. Easily obtained iodine and silver-iodine doped chitosan for medical and other applications. Carbohydrate Polymer Technologies and Applications. 2023; 5: 100318. doi: 10.1016/j.carpta.2023.100318
Xie W, Chen J, Zhang Y, et al. Copper iodine cluster nanoparticles for tumor-targeted X-ray-induced photodynamic therapy. Science China Materials. 2024; 67(10): 3358-3367. doi: 10.1007/s40843-024-2958-1
Li H, Zhang Y, Zhang J, et al. Bimetallic-based colorimetric sensor for highly selective, stable and sensitive detection of iodide ions. Microchemical Journal. 2024; 199: 110098. doi: 10.1016/j.microc.2024.110098
Zhang R, Xie H, Wang F, et al. Near‐Infrared and Cyan Dual‐Band Emission Copper Iodide Based Halides with [Cu6I9] 3−Cluster. Laser & Photonics Reviews; 2024.
Dissanayake PD, Yeom KM, Sarkar B, et al. Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. Environmental Research. 2023; 219: 115066. doi: 10.1016/j.envres.2022.115066
Cruz-Jiménez AE, Argumedo-Castrejón PA, Mateus-Ruiz JB, et al. Deoxygenation of heterocyclic N-oxides employing iodide and formic acid as a sustainable reductant. New Journal of Chemistry. 2024; 48(21): 9424-9428. doi: 10.1039/d4nj00913d
Lei Y, Yin M, Shi C, et al. Tailored molecular for ultra-stability and biocompatible pseudohalide metal-free perovskite towards X-ray detectors with record sensitivity. npj Flexible Electronics. 2024; 8(1). doi: 10.1038/s41528-024-00330-2
Chen J, Zhou K, Li J, et al. Strongly photoluminescent and radioluminescent copper(i) iodide hybrid materials made of coordinated ionic chains. Chemical Science. 2025; 16(3): 1106-1114. doi: 10.1039/d4sc06242f
Singh G, Shankar G, Panda SR, et al. Design, Synthesis, and Biological Evaluation of Ferulic Acid Template-Based Novel Multifunctional Ligands Targeting NLRP3 Inflammasome for the Management of Alzheimer’s Disease. ACS Chemical Neuroscience. 2024; 15(7): 1388-1414. doi: 10.1021/acschemneuro.3c00679
Tang W, Xing G, Xu X, et al. Emerging Hybrid Metal Halide Glasses for Sensing and Displays. Sensors. 2024; 24(16): 5258. doi: 10.3390/s24165258
Liu D, Dang P, Zhang G, et al. Near‐infrared emitting metal halide materials: Luminescence design and applications. InfoMat. 2024; 6(5). doi: 10.1002/inf2.12542
Shyamal S, Pradhan N. Nanostructured Metal Chalcohalide Photocatalysts: Crystal Structures, Synthesis, and Applications. ACS Energy Letters. 2023; 8(9): 3902-3926. doi: 10.1021/acsenergylett.3c01236
Hu M, Zhu Y, Zhou Z, et al. Post‐Treatment of Metal Halide Perovskites: From Morphology Control, Defect Passivation to Band Alignment and Construction of Heterostructures. Advanced Energy Materials. 2023; 13(41). doi: 10.1002/aenm.202301888
Zhou Y, Zhang H, Xian Y, et al. Enhancing charge-emitting shallow traps in metal halide perovskites by >100 times by surface strain. Joule. 2025; 9(1): 101772. doi: 10.1016/j.joule.2024.10.004
Abánades Lázaro I, Chen X, Ding M, et al. Metal–organic frameworks for biological applications. Nature Reviews Methods Primers. 2024; 4(1). doi: 10.1038/s43586-024-00320-8
Chen L, Liu T, Wang X, et al. Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives. Advanced Materials. 2023; 35(31). doi: 10.1002/adma.202211100
Liu J, Feng H, Dai J, et al. A Full-component recyclable Epoxy/BN thermal interface material with anisotropy high thermal conductivity and interface adaptability. Chemical Engineering Journal. 2023; 469: 143963. doi: 10.1016/j.cej.2023.143963
Kumar A, Kumar A. Heat transfer analysis in thermal energy storage—A comprehensive review‐based latent heat storage system. Energy Storage. 2022; 5(6). doi: 10.1002/est2.434
Zhao H, Ye Z, Li J, et al. Enhancing Thermal Conductivity of Thermal Interface Materials through Aligned Liquid Metal Pillars: A Promising Strategy. ACS Applied Polymer Materials. 2024; 6(8): 4431-4440. doi: 10.1021/acsapm.3c02917
Wang H, Xu F, Ding W, et al. Amphiphilic ionic liquids as catalysts for efficient synthesis of novel isosorbide-based optical polymers with good biocompatibility and tunable properties. Chemical Engineering Journal. 2024; 485: 149715. doi: 10.1016/j.cej.2024.149715
Meera K, Ramesan M. A review on the influence of various metal oxide nanoparticles on structural, morphological, optical, thermal and electrical properties of PVA/PVP blends. Journal of Thermoplastic Composite Materials. 2023; 37(9): 3036-3057. doi: 10.1177/08927057231222833
Arab K, Jafari A, Shahi F. The role of graphene quantum dots in cutting‐edge medical therapies. Polymers for Advanced Technologies. 2024; 35(9). doi: 10.1002/pat.6571
Almeida MB, Galdiano CMR, Silva Benvenuto FSR da, et al. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS Applied Materials & Interfaces. 2024; 16(49): 67054-67072. doi: 10.1021/acsami.4c00838
Pan T, Yang K, Dong X, et al. Adsorption-based capture of iodine and organic iodides: status and challenges. Journal of Materials Chemistry A. 2023; 11(11): 5460-5475. doi: 10.1039/d2ta09448g
Ebe H, Suzuki R, Sumikoshi S, et al. Guanidium iodide treatment of size-controlled CsPbI3 quantum dots for stable crystal phase and highly efficient red LEDs. Chemical Engineering Journal. 2023; 471: 144578. doi: 10.1016/j.cej.2023.144578
Chen Q, Chen S, Ma J, et al. Synergic anchoring of Fe2N nanoclusters on porous carbon to enhance reversible conversion of iodine for high-temperature zinc-iodine battery. Nano Energy. 2023; 117: 108897. doi: 10.1016/j.nanoen.2023.108897
Chee TS, Lee S, Ng WJ, et al. Bi0–Reduced Graphene Oxide Composites for the Enhanced Capture and Cold Immobilization of Off-Gas Radioactive Iodine. ACS Applied Materials & Interfaces. 2023; 15(34): 40438-40450. doi: 10.1021/acsami.3c06761
Yaqoob T, Ahmad M, Faiz Y, et al. Retention of methyl iodide on metal and TEDA impregnated activated carbon using indigenously developed setup. Environmental Research. 2023; 238: 117133. doi: 10.1016/j.envres.2023.117133
Gao Z, Zhou Y, Zhang J, et al. Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices. Advanced Materials. 2024. doi: 10.1002/adma.202404492
Alemaryeen A, Noghanian S. A Survey of the Thermal Analysis of Implanted Antennas for Wireless Biomedical Devices. Micromachines. 2023; 14(10): 1894. doi: 10.3390/mi14101894
Dentis A. Wireless Charging and Power Management System for Biomedical Implantable Devices. Politecnico di Torino; 2023.
Zannou AL. Use of Bioheat Modeling to Characterize and Optimize Implantable Medical Devices and Neuromodulation Technologies. The City College of New York; 2023.
Zhang L, Hu X, Chen Y, et al. Multiple in-situ reactions induced by biodegradable iodides: A synergistically chemodynamic-photothermal therapy platform. Chemical Engineering Journal. 2023; 465: 142699. doi: 10.1016/j.cej.2023.142699
Feng Y, Chen Q, Jin C, et al. Microwave-activated Cu-doped zirconium metal-organic framework for a highly effective combination of microwave dynamic and thermal therapy. Journal of Controlled Release. 2023; 361: 102-114. doi: 10.1016/j.jconrel.2023.07.046
Zhao X, Li T, Guo T, et al. Supramolecular Structure of the β-Cyclodextrin Metal–Organic Framework Optimizes Iodine Stability and Its Co-delivery with l-Menthol for Antibacterial Applications. ACS Applied Materials & Interfaces. 2024; 16(19): 24235-24247. doi: 10.1021/acsami.4c02258
Scafa Udriște A, Burdușel A, Niculescu AG, et al. Metal-Based Nanoparticles for Cardiovascular Diseases. International Journal of Molecular Sciences. 2024; 25(2): 1001. doi: 10.3390/ijms25021001
Yu M, Li S, Ren X, et al. Magnetic Bimetallic Heterointerface Nanomissiles with Enhanced Microwave Absorption for Microwave Thermal/Dynamics Therapy of Breast Cancer. ACS Nano. 2024; 18(4): 3636-3650. doi: 10.1021/acsnano.3c11433
Ismail YH, Wang K, Al Shehhi M, et al. Iodide ion-imprinted chitosan beads for highly selective adsorption for nuclear wastewater treatment applications. Heliyon. 2024; 10(3): e24735. doi: 10.1016/j.heliyon.2024.e24735
Ghosh SK, Mbileni Morema CN, Mallick K. Electrical performance of organic molecule stabilized ultrafine tin(II) iodide particles: Towards an in-situ sensing application. Chemical Physics Letters. 2024; 854: 141556. doi: 10.1016/j.cplett.2024.141556
Chu D, Jia B, Liu N, et al. Lattice engineering for stabilized black FAPbI 3 perovskite single crystals for high-resolution x-ray imaging at the lowest dose. Science Advances. 2023; 9(35). doi: 10.1126/sciadv.adh2255
Guo C, Chen C, Wan R, et al. Iodide-based glass with combination of high transparency and conductivity: A novel promising candidate for transparent microwave absorption and radar stealth. Chemical Engineering Journal. 2024; 484: 148930. doi: 10.1016/j.cej.2024.148930
Chen P, Wang J, Xue Y, et al. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. Water Research. 2024; 265: 122297. doi: 10.1016/j.watres.2024.122297
Khan SA, Khan NZ, Sohail M, et al. Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications. Materials Today Physics. 2023; 34: 101079. doi: 10.1016/j.mtphys.2023.101079
Harrington B, Ye Z, Signor L, et al. Luminescence Thermometry Beyond the Biological Realm. ACS Nanoscience Au. 2023; 4(1): 30-61. doi: 10.1021/acsnanoscienceau.3c00051
Badidi E. Edge AI for Early Detection of Chronic Diseases and the Spread of Infectious Diseases: Opportunities, Challenges, and Future Directions. Future Internet. 2023; 15(11): 370. doi: 10.3390/fi15110370
Aabed K, Mohammed AE. Synergistic and Antagonistic Effects of Biogenic Silver Nanoparticles in Combination With Antibiotics Against Some Pathogenic Microbes. Frontiers in Bioengineering and Biotechnology. 2021; 9. doi: 10.3389/fbioe.2021.652362
de Solorzano IO, Alejo T, Abad M, et al. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery. Journal of Colloid and Interface Science. 2019; 533: 171-181. doi: 10.1016/j.jcis.2018.08.069
Wei W, Lu P. Designing Dual-Responsive Drug Delivery Systems: The Role of Phase Change Materials and Metal–Organic Frameworks. Materials. 2024; 17(13): 3070. doi: 10.3390/ma17133070
Xia Y, Liu C, Zhao X, et al. Highly stable and near-infrared responsive phase change materials for targeted enzyme delivery toward cancer therapy. Materials Today Bio. 2024; 29: 101345. doi: 10.1016/j.mtbio.2024.101345
Chen C, Zhang W, Wang P, et al. Thermo-responsive composite nanoparticles based on hydroxybutyl chitosan oligosaccharide: Fabrication, stimulus release and cancer therapy. International Journal of Biological Macromolecules. 2024; 276: 133842. doi: 10.1016/j.ijbiomac.2024.133842
Mansha M, Abbas N, Altaf F, et al. Nanomaterial-based probes for iodide sensing: synthesis strategies, applications, challenges, and solutions. Journal of Materials Chemistry C. 2024; 12(14): 4919-4947. doi: 10.1039/d3tc04611g
Tawiah B, Ofori EA, Chen D, et al. Sciento-qualitative study of zinc-iodine energy storage systems. Journal of Energy Storage. 2024; 79: 110086. doi: 10.1016/j.est.2023.110086
Song L, Fan Y, Fan H, et al. Photo-assisted rechargeable metal batteries. Nano Energy. 2024; 125: 109538. doi: 10.1016/j.nanoen.2024.109538