The economy, unemployment, and job creation of South Africa heavily depend on the growth of the agricultural sector. With a growing population of 60 million, there are approximately 4 million small-scale farmers (SSF) number, and about 36,000 commercial farmers which serve South Africa. The agricultural sector in South Africa faces challenges such as climate change, lack of access to infrastructure and training, high labour costs, limited access to modern technology, and resource constraints. Precision agriculture (PA) using AI can address many of these issues for small-scale farmers by improving access to technology, reducing production costs, enhancing skills and training, improving data management, and providing better irrigation infrastructure and transport access. However, there is a dearth of research on the application of precision agriculture using artificial intelligence (AI) by small scale farmers (SSF) in South Africa and Africa at large. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Bibliometric analysis guidelines were used to investigate the adoption of precision agriculture and its socio-economic implications for small-scale farmers in South Africa or the systematic literature review (SLR) compared various challenges and the use of PA and AI for small-scale farmers. The incorporation of AI-driven PA offers a significant increase in productivity and efficiency. Through a detailed systematic review of existing literature from inception to date, this study examines 182 articles synthesized from two major databases (Scopus and Web of Science). The systematic review was conducted using the machine learning tool R Studio. The study analyzed the literature review articled identified, challenges, and potential societal impact of AI-driven precision agriculture.
This research seeks to identify the value of a few common factors determining the speed of economic growth in Baltic states and analyzes their impact in detail on Latvia’s lagging. Latvia’s economic starting point after regaining independence because of the collapse of the Soviet Union was at least comparable to its neighbors. Still, after the implementation of liberal reforms towards a free market’ economy and 20 years of operation as an EU full member, Latvia is lagging in growth, prosperity, and innovation. Within the analysis, this scientific paper pays special attention to the three less discussed factors, namely, the impact of post-Soviet mind-set effects as a part of local innovation culture, lasting since regaining independence in 1991; the importance of the availability of talent pull, its density, diversity, and accessibility; and readiness and capability to capture external knowledge and technology adoption. The overall approach is the systemic assessment of the national innovation system and/or innovation ecosystem, trying to understand the differences between these two models. Research is performed by analysis of the performance of the local innovation ecosystem in connection with export- and Foreign Direct Investment (FDI) policies. The authors present a novel method for visually representing economic growth and its application in analyzing process development within transitional economic nations. The study uses an analytical and synthetical literature review. It offers a new GDP data visualization method useful for monitoring economic development and forecasting potential economic crises—the outcomes from aggregative literature analysis in a consolidated concept are provided for required talent policy proposals. The post-Soviet mindset is seen as a heritage and devious underdog that has left incredibly diverse consequences on today’s society, power structures, economic growth potential, and the emergence of healthy, well-managed, and sustainable innovation ecosystems. The post-Soviet mindset is a seemingly hidden and, at the same time, an intriguing factor that has a significant impact on the desire to make and implement the right decisions related to innovation, education, and other policies promoting business development. The key outcome of the article is that sociocultural aspects and differences in innovation culture led to a slow-down of Latvia’s economic growth compared to Estonia’s and Lithuania’s slightly more successful economic reforms.
Students from different cultures possess varying levels of skills in learning, remembering, and understanding concepts. Some terms and their explanations may seem easy for one group of students but difficult for another. Therefore, delivering educational content that aligns with student’s learning capabilities is a challenging task based on cultural orientations. This study addresses the learning challenges by developing a Thesaurus Glossary E-learning (TGE) framework method. This study introduces the TGE method which is a multi-language tool with visual associations that adapts to students’ capabilities. It also examines cultural differences and native languages, particularly aiding Arab Native to visualize appropriate terms (thesaurus) and their explanations (glossary) based on students’ learning capabilities. TGE learns from students’ term selection behavior and displays terms at a simple or advanced level that matches their learning ability. Additionally, TGE demonstrated its effectiveness as an e-learning tool, accessible to all students anytime and anywhere. The study analyzed 314 records related to student performance, out of which 114 students were surveyed to evaluate the effectiveness of the TGE method. This work presents TGE as a novel e-learning tool designed to enhance conceptual thinking within the context of modern educational practices during the digital transformation. TGE is based on artificial intelligence algorithms and associative rules that simulate the human brain, establishing logical connections between related key terms and sketching associations among diverse facets of a situation. An experiment was conducted at a private university in the Sultanate of Oman to assess the effectiveness of the proposed TGE tool. TGE was integrated with selected subjects in information systems and used by the students as a resource for e-learning methods and materials. The results show that 85% of students who used TGE improved their performance by 19%. We believe this work could establish a new smart e-learning teaching method and attract modern and digital universities to enhance student learning outcomes linked with conceptual thinking.
A decent income is an important part of overcoming economic disparities in agricultural development, especially in developing countries where most of the population are small farmers. As a developing country, Indonesia has also established a decent standard of living by setting a minimum wage as a reference for a decent income at the national and regional levels. However, this benchmark is not relevant to be applied uniformly at all levels of workers. This research determines the national coffee development area as the study center. We developed the Anker living wage methodology as a simple concept for determining living income for certain worker communities, especially for small farmers in rural areas who dominate the type of work in Indonesia. a socio-spatial approach is used to visualize the distribution of the dynamics of a decent life in various conditions of farming households. We found that 96.6% of coffee farming households in the national coffee development area had an inadequate living income, and only 3.4% were at an adequate level. We conclude that the current state of agricultural land management does not guarantee a decent income, even though efforts have been made to maximize agricultural crop productivity. The spatial description also shows that this condition is evenly distributed throughout residential areas. It is hoped that this approach can become an essential reference in implementing agricultural development programs that focus on welfare and equitable development as benchmarks for sustainable development goals in the future.
The purpose of this study is to analyze issues related to the use of green technology and to provide a theoretical basis for how the application of green technology in agriculture can reduce inequality. Additionally, the study aims to explore policy alternatives based on the analysis of inequality reduction issues through farmer surveys. For this purpose, this study used survey data to analyze farmers’ perceptions, acceptance status, willingness to accept green technology, and perceptions of inequality. The quantitative analysis was performed to analyze the relationship between the acceptance of green technology and perceptions of inequality. The results confirmed that access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions are major factors. In particular, the higher the satisfaction with policies regarding the introduction of green technology, the lower the perception of inequality. Specifically, the acceptance of green technology showed a significant positive correlation with access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions, while perceptions of inequality showed a significant negative correlation with policy satisfaction. In conclusion, green technology in agriculture is vital for reducing climate change damage and inequality. However, targeted policy support for small-scale farmers is essential for successful adoption. This study provides policy implications related to the application of green technology in the agricultural sector, which can promote sustainable agricultural development.
Copyright © by EnPress Publisher. All rights reserved.